DES Waste Management Division 29 Hazen Drive; PO Box 95 Concord, NH 03302-0095

SUPPLEMENTAL SITE INVESTIGATION REPORT

North Hampton Municipal Complex 231-235 Atlantic Avenue North Hampton, New Hampshire

> NHDES Site #201904026 Project #39130

Prepared For:

Town of North Hampton 233 Atlantic Avenue North Hampton, New Hampshire 03862 Contact: Michael Tully, Town Administrator

Prepared By:

StoneHill Environmental 600 State Street, Suite 2 Portsmouth, New Hampshire 03801 Contact: Timothy Stone, PG Phone Number: 603-433-1935

Timothy Stone, PG

STONE

hothy/Stone

Principal

Chad G.Tomforde, PG Report Reviewer

Date of Report: December 20, 2021 StoneHill Project No. 2021003

Table of Contents

Supplemental Site Investigation Report North Hampton Municipal Complex 231-235 Atlantic Avenue North Hampton, New Hampshire

Section	<u>on</u>		Page No.
1.0	INT	RODUCTION	1
2.0	BAC	CKGROUND	1
3.0	SCO	OPE OF WORK AND PROJECT INITIATION	2
4.0	SITI	E DESCRIPTION AND ENVIRONMENTAL SETTING	2
5.0	FIEI	LD INVESTIGATIONS	3
	5.1	Soil Borings and Installation of Monitoring Wells	3
	5.2	Monitoring Well Sampling	5
	5.3	Basin Sediment Sampling	
	5.4	Surface Water Sampling	
	5.5	Site Vicinity Water Supply Well Survey and Sampling	6
6.0	HYL	DROGEOLOGIC AND CONTAMINANT EVALUATION	7
	6.1	Physical and Hydrogeologic Setting	
	6.2	Groundwater	
	6.3	Surface Water	8
	6.4	Catch Basin Sediment	8
	6.5	Water Supply Analyses	8
7.0	SUM	MMARY AND CONCLUSIONS	8
8.0	REC	COMMENDATIONS	9
9.0	LIM	IITATIONS	10
10.0	REF	TERENCES	10

Table of Contents

SUPPLEMENTAL SITE INVESTIGATION REPORT

North Hampton Municipal Complex 231-235 Atlantic Avenue North Hampton, New Hampshire

LIST OF TABLES

- Table 1 Groundwater Elevation Data
- Table 2 Summary of Groundwater PFAS Analyses
- Table 3 Summary of Surface Water PFAS Analyses
- Table 4 Summary of Water Supply Well PFAS Analyses
- Table 5 Summary of Soil PFAS Analyses
- Table 6 Properties within 1,000-foot Radius

LIST OF FIGURES

- Figure 1 Site Locus Map
- Figure 2 Study Area Overview
- Figure 3 Site Features and Monitoring Well Locations
- Figure 4 Area Map w/ Surface Water and Supply Well PFAS Results (including 1,000-Foot Radius)
- Figure 5 Cross Section A-A'
- Figure 6 Cross Section B-B'
- Figure 7 Interpreted Overburden Groundwater Flow (May 17, 2021)
- Figure 8- Groundwater PFAS Results

LIST OF APPENDICES

APPENDIX A - Boring Logs/Monitoring Well Construction Data

APPENDIX B - Laboratory Analytical Reports

SUPPLEMENTAL SITE INVESTIGATION REPORT

North Hampton Municipal Complex 231-235 Atlantic Avenue North Hampton, New Hampshire

1.0 INTRODUCTION

StoneHill Environmental (StoneHill) has prepared this Supplemental Site Investigation (SSI) Report in response to the request by New Hampshire Department of Environmental Services (NHDES) in a letter to the Town of North Hampton (Town) dated October 8, 2020. The SSI Report was prepared in general accordance with New Hampshire Code of Administrative Rules Part Env-Or 606.03 through 606.09, and a Work Plan prepared by StoneHill delivered to NHDES on February 24, 2021.

The subject property is located at 231-235 Atlantic Avenue in the town of North Hampton, New Hampshire (Site). The Site is the location of the town municipal complex which includes the fire station and Town offices. The Site location is shown on Figure 1 – Site Locus Map. The Site is listed by NHDES as Site Number 201904026, Project Number 39130. The SSI was conducted to further assess the nature and extent of groundwater contamination related to a possible release of per- and polyfluoroalkyl substances (PFAS) from unknown sources. In addition, the SSI was conducted to identify public and environmental receptors potentially impacted by the release, and to help support development of additional investigation and/or remedial actions for the Site as appropriate.

2.0 BACKGROUND

During NHDES regulated groundwater sampling activities associated with two commercial properties at 227 (Lot 7/150) and 227A (Lot 7/149) Atlantic Avenue in 2017 and 2018, PFAS compounds were detected in groundwater samples at concentrations exceeding applicable NHDES Ambient Groundwater Quality Standards (AGQS). In response to these findings, Sanborn Head & Associates, Inc. (SHA) was retained by NHDES to complete an Abbreviated Preliminary Assessment (APA) and a follow-up Site Inspection assessment in November 2019 and March 2020, respectively. These studies provide in depth details of the Site and vicinity history and property uses. Technical reports prepared by SHA documenting the findings of the APA and Site Inspection are available on the NHDES OneStop database. As a result of these studies. Notification of Groundwater Quality Violations were filed for two additional properties at 233/235 Atlantic Avenue and 231 Atlantic Avenue, properties including Town of North Hampton Fire Department and Town Hall. The SHA assessment activities identified the historical storage and use of Class B aqueous film-forming foam (AFFF) at the North Hampton Fire Department facility. AFFF has been identified as a source for PFAS compounds at other locations, and its presence was identified by SHA as a potential source for the PFAS compounds in the study area. Of particular concern was the presence of a floor drain system at the Fire Department which was connected to a former oil/water separator that discharged to the on-site storm drain system.

The activities completed on the Site by SHA during the Site Inspection included the completion of five overburden soil borings that met shallow refusals on bedrock and the collection of four soil samples for PFAS analyses. The soil analytical results did not detect PFAS above method reporting limits. However, a groundwater sample collected from one temporary monitoring well (SH-06W) installed by SHA at the presumed downgradient property boundary to the northeast did contain PFAS compounds at elevated concentrations. PFAS compounds had also been detected at concentrations above AGQS in samples from multiple monitoring wells on the Hero BX property to the northeast (Lot 7/149), including in a sample from the on-site water supply well installed in bedrock, and in a nearby surface water sample. In response to the PFAS detections, both on the Site and at off-Site locations, NHDES issued a letter to the Town dated October 8, 2020, requesting completion of an SSI at the municipal complex to further investigate the PFAS impacts in the study area.

3.0 SCOPE OF WORK AND PROJECT INITIATION

PFAS compounds had been detected in samples from shallow overburden groundwater, bedrock groundwater, and surface water in the Site vicinity. As such, StoneHill proposed an approach that provided a more comprehensive evaluation of likely PFAS source areas relative to overburden and bedrock groundwater impacts. Given the shallow refusals encountered by SHA at on-Site soil boring locations, a substantial portion of the investigation was dedicated to evaluation of shallow bedrock groundwater. The SSI activities consisted of background research; sensitive receptor survey; obtaining Dig Safe clearance for subsurface investigation; the advancement of seven soil borings with six completed as groundwater monitoring wells; stormwater catch basin sediment sampling; groundwater sampling and analyses at the newly installed monitoring wells; well elevation survey; surface water sampling; private water supply sampling; data review; and preparation of this report. This SSI Report is subject to the limitations presented in **Section 9.0**.

StoneHill conducted a review of available background files and hydrogeologic information in preparation for a Site visit to identify the locations of soil borings and groundwater monitoring wells to be installed as part of the SSI. The boring locations were pre-marked in the field for utility clearance by Dig Safe's member utilities. StoneHill prepared a base site plan and a Site Health and Safety Plan as required by the OSHA in 29 Code of Federal Regulations 1910.120. This task also included a kick-off meeting by the members of the StoneHill team to plan and schedule field activities.

4.0 SITE DESCRIPTION AND ENVIRONMENTAL SETTING

The subject properties are in the town of North Hampton, New Hampshire, east of the intersection of Atlantic Avenue and Lafayette Road (US Route 1), See Figure 1 – Site Locus Map. The properties are identified as Map 7/Lot 146 and Map 7/Lot 147 by the Town of North Hampton Assessor's Department. The facility is the municipal complex which includes town offices and a fire station. The surrounding area consists of a mix of commercial and residential use. Current usage of abutting or nearby properties includes residential to the north, south, and west. Commercial properties are located to the east and northeast. The nature of the surrounding land development is shown on Figure 2 – Study Area Overview.

The Site and most of the surrounding area properties are supplied with drinking water via a municipal public water supply system operated by Aquarion Water Company (Aquarion). All residential properties immediately adjacent to the Site property are serviced by municipal water. According to the Town of North Hampton Building Department and on-Site inspections, the Site is serviced with an on-site septic system and leaching field.

The Site elevation is approximately 100 feet above mean sea level. The Site is generally flat with gentle slopes to the north-northeast and the south. The closest surface water features are wetlands and a tributary to the Little River approximately 500 feet to the northeast, and wetlands approximately 400 feet to the south across Atlantic Avenue. The bedrock in the study area is mapped as the Rye Complex and described as light-colored gray schists and gneisses, quartzites, and amphibolites.

5.0 FIELD INVESTIGATIONS

5.1 Soil Borings and Installation of Monitoring Wells

Due to the potential presence of a PFAS source and the detected presence of PFAS in a nearby bedrock water supply well, the SSI work plan included the installation of both overburden and shallow bedrock monitoring wells. StoneHill coordinated and oversaw subcontracted drilling services provided by GeoSearch Environmental Contractors (GeoSearch) of Sterling, Massachusetts, for advancement of seven soil borings, all of which were converted to groundwater monitoring wells, except soil boring B-1. The soil boring/monitoring wells were installed at the locations shown on Figure 3 - Site Features and Monitoring Well Locations. Well installation and construction logs are provided in **Appendix A**. One monitoring well couplet, MW-2/MW-2R, was constructed to include an overburden water table well and a shallow bedrock well adjacent to the decommissioned oil-water separator location. Two additional shallow bedrock monitoring wells were installed; one in the southwest corner of the property (MW-4R) and the other just north/northeast of the fire station and on-Site leach field (MW-3R). Overburden wells were installed in northern on-Site locations (MW-5 and MW-6) anticipated to be downgradient of the Fire Station and the oil/water separator with respect to the interpreted direction of groundwater flow. A summary of the drilling program and rationales for the monitoring well locations are shown in the following table.

WELL ID	ТҮРЕ	BDRX DEPTH	BDRX CASING DEPTH	BORING/WELL DEPTH	RATIONALE
B-1 MW-1	OB	1'	NA	15'	NW corner – Groundwater not encountered, well not installed
MW-2R	Bdrx	14'	19'	30'	Adjacent to OWS/possible source
MW-2	OB	NA	NA	12'	Adjacent to OWS/potential source
MW-3R	Bdrx	13'	18'	28'	N property boundary, downgradient of potential source
MW-4R	Bdrx	14'	18.5'	40'	SW corner, potential up- or down-gradient of source
MW-5	OB	NA	NA	12'	NE corner, likely downgradient of source, near SH-06W
MW-6	OB	NA	NA	13.5'	N boundary at location of former DPW Building

Notes:

OB = Overburden water table well

Bdrx = Shallow bedrock well OWS = Former oil/water separator

NA = Not applicable

A truck-mounted drill rig operated by GeoSearch was utilized to complete soil borings and monitoring wells. The bedrock groundwater wells were completed by drilling with 4.25-inch inside diameter hollow stem augers until refusal was encountered, followed by air hammering (by air-rotary drilling methods) a socket several feet into competent bedrock to seat 4-inch diameter steel casings. The steel casings were then grouted in place with a mixture of bentonite and Portland cement as the augers were removed. The grout was then allowed to cure for a minimum of 24 hours. The bedrock wells were then completed by air hammering with a 3-3/4-inch diameter bit to the completion depth where sufficient groundwater for sampling was encountered.

The overburden groundwater wells were drilled by hollow stem auger techniques with 4.25-inch inner diameter augers and completed as 2-inch diameter PVC monitoring wells. Overburden monitoring wells were installed at the proposed locations except for MW-1 which was not installed due to the lack of observed groundwater in either overburden or in bedrock fractures at this location. Instead, soil boring B-6 located along the northern property boundary was completed as an overburden monitoring well MW-6. The overburden monitoring wells were constructed with five feet of two-inch diameter PVC slotted well screen and solid riser. A clean filter sand pack was placed between the well casing and borehole wall to a depth of at least two feet above the top of the well screen and topped with a one-foot-thick bentonite seal. The remainder of the borehole annulus was backfilled with drill cuttings or filter sand. All monitoring wells were completed at the surface with a flush-mounted steel protective road boxes set in a concrete pad.

Well development was conducted one week following the completion of well installations on April 28, 2021, by the pump and surge methodology utilizing a surge block. On May 17, 2021, the top-of-casing elevations for each well were determined by a level survey referenced to the top of the storm drain grate (CB-1) located south of monitoring wells MW-2/2R which was assigned an elevation of 100.00. Synoptic water levels were measured on three occasions and the results are provided in **Table 1- Groundwater Elevation Data**.

5.2 Monitoring Well Sampling

One round of groundwater samples was collected from the six newly installed monitoring wells. The sampling event was performed on May 17, 2021, after the wells had been allowed to equilibrate for over two weeks since well development. Groundwater sampling methods conformed to NHDES published guidelines for PFAS groundwater sampling. Prior to purging and sampling the monitoring wells, water table depths were measured using an electronic water level indicator. The monitoring wells were purged prior to sampling by removal of water with a polyethylene bailer dedicated to each well, until the equivalent of at least three volumes of the standing water in the casing were removed. The groundwater samples were then collected using the polyethylene bailer dedicated to each well. The groundwater samples were transferred into the appropriate containers supplied by the laboratory, placed in an insulated cooler with ice, and transported to the analytical laboratory with appropriate chain of custody documentation. As quality assurance/quality control (QA/QC) measures, a trip blank water sample supplied by the laboratory accompanied the sample bottles during the sampling events and a field blank was also collected. Sheens or odors were not encountered in purge water obtained from any of the monitoring wells. The groundwater samples were submitted for isotope dilution analysis of PFAS using EPA Method 537 (Modified). The analyses included 29 PFAS compounds, including the four (4) regulated compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonic acid (PFOS). The analytical results are summarized in Table 2 - Summary of Groundwater PFAS Analyses. Laboratory analytical reports are provided in **Appendix B**.

5.3 Basin Sediment Sampling

On May 17, 2021, StoneHill collected a sediment sample from the on-Site catch basin (CB-1), which may have received fire equipment wash water runoff associated with fire department operations and historically discharges from the former oil/water separator which was connected to the stormwater drainage system. The sediment sample was collected by removing the storm drain cover and retrieving a sediment sample with a hand auger from the sediment surface to a depth of two feet. The sediment sample was submitted for isotope dilution analysis of PFAS using EPA Method 537 (Modified). The analyses included 29 PFAS compounds, including the four (4) regulated compounds: PFOA, PFNA, PFHxS, and PFOS. The analytical results are summarized in **Table 5 – Summary of Soil PFAS Analyses**. Table 5 also includes the analytical results for soil samples collected from soil borings completed on the Site by SHA in August 2019. The laboratory analytical report for the sediment sample is provided in **Appendix B**.

5.4 Surface Water Sampling

StoneHill collected three grab surface water samples on June 3, 2021, from the nearby wetlands to the northeast and south across Atlantic Avenue. The surface water samples were collected directly into laboratory provided teflon-free containers. One sample was collected from the previously established location SW-1 which was identified in the field with flagging that remained from the August 2019 sampling completed by SHA. An additional sampling location, SW-2, was established approximately 800 feet downstream and north-northeast of SW-1. Surface water was observed to be flowing slowly at both surface water sampling locations. The third surface water

sample, SW-3, was collected approximately 350 feet south of Atlantic Avenue in a low-lying vegetated area with standing water that was likely in an area that received stormwater discharged from the Site storm drain system, which discharged from a culvert that passes under Atlantic Avenue. A search for the specific location of the culvert discharge by StoneHill and a Town of North Hampton official was not successful due to dense vegetation. The three surface water samples were packed on ice and submitted to a New Hampshire certified laboratory under proper chain-of-custody protocols for PFAS analysis using isotope dilution by EPA Method 537 (Modified). The analyses included a list of 29 compounds including the four regulated compounds: PFOA, PFNA, PFHxS, and PFOS. The surface water sample locations are shown on **Figure 4** – **Area Map w**/ **Surface Water and Water Supply Well PFAS Results** and the results are summarized on **Table 3** – **Summary of Surface Water PFAS Analyses**. Laboratory analytical reports are provided in **Appendix B**.

5.5 Site Vicinity Water Supply Well Survey and Sampling

StoneHill personnel reviewed the receptors information compiled by SHA for thoroughness and accuracy to further assess the potential for impacts to sensitive receptors. Potential locations with water supply wells were identified in the Site vicinity by SHA including at 202 Atlantic Avenue, 206B Atlantic Avenue, 219 Atlantic Avenue, 221 Atlantic Avenue, 225A Atlantic Avenue, 227A Atlantic Avenue. Of these locations, only two had been previously sampled. In addition, one public water supply servicing the seasonal Seacoast Camping and RV Resort was identified approximately ½-mile from the Site.

StoneHill completed further research regarding the presence of private water supplies within 1,000-feet of the municipal complex as part of this assessment. Readily available information on local water supply wells was solicited from the Town of North Hampton, NHDES Water Well Board records, inquiries with the local water supplier Aquarion, and completion of a door-to-door survey of the properties with possible on-Site wells. StoneHill's research identified that public water was being supplied to virtually all properties within a 1,000-foot radius except for the previously identified supply well a Lot 7/149, and one newly identified residential supply well located at 206B Atlantic Avenue (Lot 7/77) located approximately 1,000 feet southeast of the Site. These two water supply wells identified within the 1,000-foot radius were sampled on June 3, 2021. The commercial well located at 227 Atlantic Avenue (Lot 7/149) had been previously sampled by SHA in March 2018. StoneHill collected the sample at this location from a sink in the garage. The residential well at 206B Atlantic Avenue was sampled from a spigot at the pressure tank, a location prior to any water treatment. The two supply well samples were packed on ice and submitted to a New Hampshire certified laboratory under proper chain-of-custody protocols for PFAS analysis using isotope dilution by EPA Method 537 (Modified). The analyses included a list of 29 compounds including the four regulated compounds: PFOA, PFNA, PFHxS, and PFOS. The supply well locations are shown on Figure 4 – Area Map w/ Surface Water and Supply Well PFAS Results and the analytical results are summarized on Table 4- Summary of Water Supply Well PFAS Analyses. Laboratory analytical reports are provided in Appendix B.

6.0 HYDROGEOLOGIC AND CONTAMINANT EVALUATION

6.1 Physical and Hydrogeologic Setting

As shown on the United States Geological Survey (USGS), 7.5 Minute Series Topographic Map of Hampton, New Hampshire Quadrangle (Figure 1), the Site is located at an average elevation of approximately 100 feet above Mean Sea Level. The immediate study area is likely to be underlain by a thin layer of overburden sediments characterized as either glacial till or glacial outwash deposits. The overburden soil borings completed by SHA indicate the Site is primarily underlain by fine to coarse sand, with some gravel and trace silt. During the course subsurface investigations completed on the Site, nine soil borings encountered refusal, assumed to be on bedrock, at depths ranging 6 to 14 feet below ground surface. Two geologic cross sections for the Site have been prepared and are presented as **Figure 5** and **Figure 6**.

Depth to groundwater levels measured in the on-Site monitoring wells were found to range from approximately 6 to 9 feet below ground surface (bgs) (see Table 1). Groundwater elevation contours measured during the May 17, 2021, sampling event have been developed and are presented on Figure 7 - Interpreted Overburden Groundwater Flow. The overburden groundwater elevations can be interpreted to infer that a groundwater divide trending westnorthwest to east-southeast may be present in the overburden in the vicinity of monitoring wells MW-2 and MW-2R, resulting in overburden groundwater flow currently interpreted to be to the northeast and south. The presence of a divide in this vicinity is consistent with what might be interpreted from a review of local surface topography and nearby surface water drainages, which indicates a surface water divide along the axis of Atlantic Avenue in the study area, with flow to the wetlands and an unnamed brook to the south of Atlantic Avenue, and flow to the northeast north of Atlantic Avenue to wetlands and a tributary of the Little River to the northeast of the Site. A review of the water levels in the bedrock/overburden couplet MW-2/2R suggested a slight upward gradient in the data from May 17th and a slight downward gradient in the July 26th data. More rounds of groundwater level measurement are necessary to draw any meaningful conclusions regarding potential vertical gradients between the bedrock and overburden.

6.2 Groundwater

Analytical results from the May 17, 2021, sampling indicated that PFAS compounds were detected in all groundwater samples collected from the monitoring wells. Samples from monitoring wells MW-2, MW-2R, MW-3R, MW-4R, and MW-6, contained one or more compounds exceeding established AGQSs for PFAS. Only the sample from well MW-5 was reported to not contain any PFAS compounds exceeding an established AGQS. The low PFAS concentrations detected in the groundwater sample collected from monitoring well MW-5 contrast with the significant concentrations detected in the water sample collected in August 2019 by SHA from the temporary well SH-06W located only 20 feet to the south. The results from samples from the remaining monitoring wells were relatively similar with the exception of slightly more elevated concentrations of PFOA, PFHxS, and PFOS detected in the sample from bedrock monitoring well MW-4R located at the southwest corner of the Site property boundary. The only other consistent trend regarding the concentrations of PFOA, PFHxS, and PFOS detected in groundwater, is that in all samples PFOA was detected at the lowest concentration, followed by PFHxS, with PFOS

reported at the greatest concentrations. Otherwise, it is premature to draw other conclusions until additional rounds of groundwater sampling and analyses have been completed.

The distribution of PFAS detected in groundwater samples at the Site is depicted on **Figure 8** – **Groundwater PFAS Results**.

6.3 Surface Water

The surface water sample analyses detected PFAS compounds in all three of the samples collected on June 3, 2021. The surface water sample SW-1 contained PFAS compounds at concentrations similar to the results for the sample collected from the same location in August 2019. The concentrations of PFOA, PFHxS, and PFOS in both samples exceeded AGQSs which are being used for comparison purposes, since surface water standards have not yet been established for PFAS compounds. As might be expected, at a downstream location likely to be more removed from potential contaminant source areas, the PFAS concentrations detected in the sample collected at SW-2 approximately 800 feet downstream of SW-1, were significantly less and all below AGQSs. The analyses of the surface water sample collected at SW-3, located south of Atlantic Avenue in a low-lying area likely to receive stormwater drainage from the Site, detected significant concentrations of PFAS compounds. The PFOA, PFHxS, and PFOS concentrations reported were significantly above AGQSs, with the latter two compounds over fifty times the AGQS.

6.4 Catch Basin Sediment

The analysis of the sediment sample collected from the stormwater catch basin CB-1 did not contain PFOA, PFNA, PFHxS, or PFOS above the method reporting limit. However, trace estimated concentrations of Perfluorobutanoic Acid (PFBA) and Perfluorpentanoic Acid (PFPeA) were detected in the sediment sample at 0.38 micrograms per kilogram (ug/kg) and 0.45 ug/kg, respectively.

6.5 Water Supply Analyses

The sample from 227A Atlantic Avenue (Lot 7/149) was found to contain PFAS compounds at concentrations exceeding the NHDES AGQS for PFOA, PFHxS and PFOS, at concentrations remarkably similar to those detected in a sample collected on March 25, 2018. The water sample collected from the residential supply well located at 206B Atlantic Avenue (Lot 7/77) did not contain PFAS compounds above method detection limits.

7.0 SUMMARY AND CONCLUSIONS

The following summary and conclusions are based upon information collected by StoneHill during completion of this SSI for the subject properties located at 231-235 Atlantic Avenue, North Hampton, New Hampshire:

 Seven soil borings were completed with three completed as overburden monitoring wells and three completed as shallow bedrock monitoring wells. The depth to bedrock beneath the Site ranges from 6 to 14 feet. Groundwater elevations measured in the monitoring wells may indicate that a groundwater flow divide is present in the vicinity of the southern Site boundary and with possibly both overburden and bedrock groundwater to the northeast and south.

- On round of groundwater sampling was completed and the samples analyzed for PFAS.
 The analytical results indicate PFASs in groundwater in both the overburden and shallow bedrock at concentrations exceeding AGQSs for several PFAS compounds. Specific trends in the degree and extent of overburden and bedrock groundwater PFAS contamination can't be determined until addition confirmatory samples are collected and analyzed.
- A sediment sample collected from stormwater catch basin CB-1 which received historic
 discharges from a former oil/water separator was found to contain only trace concentrations
 of two PFASs. The sediment in the catch basin does not currently appear to be a source of
 PFAS at the Site.
- All three surface water samples collected from off-Site locations contained PFAS, confirming the presence of PFAS impacts to the wetlands several hundred feet northeast of the Site, in addition to significantly elevated PFAS concentrations in surface water sampled to the south of the Site across Atlantic Avenue where the Site storm drain system discharges.
- A detailed survey of water supply wells within a 1,000-foot radius of the Site only identified one residential supply well approximately 1,000 feet southeast of the Site. The residential supply well at 206B Atlantic Avenue was sampled and analyses did not identify PFASs above method detection levels. A previously sampled supply well at the commercial property located a 227A Atlantic Avenue, northeast of the Site, was also sampled and the reported PFAS concentrations were similar to those detected in 2019.
- Based upon the data collected during the SSI which indicates the Site is upgradient of the surrounding properties with respect to groundwater flow, it appears that the past handling of AFFF by the North Hampton Fire Department is at least one source of the PFAS contamination identified in groundwater in the study area. While studies to date have not specifically identified an on-Site source area, the PFAS contamination detected is likely to have originated from historic discharges to the Fire Station floor drain system which discharged to an oil/water separator which in turn discharged to a storm drain catch basin which discharges to a wetland area south of Atlantic Avenue. Another potential source could be the historic release AFFF onto the ground surface at the fire station and the surface runoff of wash water from the cleaning of fire-fighting equipment impacted by AFFF.

8.0 RECOMMENDATIONS

Based on the information reviewed and data collected as part of this SSI, StoneHill recommends the following:

1. At least one additional round of groundwater samples should be collected from the on-Site monitoring wells to confirm the results of the May 2021 sampling round.

- 2. Additional investigation of the degree and extent PFAS contamination at the SW-3 surface water sampling location is necessary. The additional assessment should include soil sampling and additional surface water sampling, possibly downstream of SW-3. It is also recommended that the exact location of stormwater culvert discharge be located. This may be best accomplished during a rainfall event at which time the discharge water could be sampled for PFAS analyses to determine if stormwater discharged from this location is still a source of PFAS migration.
- 3. To date, soil samples have not been collected at the exact location of the decommissioned oil/water separator. As such, the completion of soil borings at this location would appear warranted to eliminate or confirm the presence of soil which may be a continuing source of PFAS migration to groundwater.

9.0 LIMITATIONS

The SSI was conducted to further evaluate the nature, extent and magnitude of PFAS contamination at the Town of North Hampton municipal complex and the surrounding vicinity. The SSI is not intended to be a comprehensive environmental site assessment, audit or industrial hygiene survey which would ascertain compliance with federal and state regulations other than those explicitly stated herein. The information in this report is subject to the limitations of historical documentation, the availability and accuracy pertinent records reviewed during the course of the investigation. The information presented in this report is applicable only to the dates indicated in this SSI Report.

It should be noted that the findings and conclusions of this SI do not constitute scientific certainties, but rather probabilities based upon our professional judgement concerning data gathered during the course of the investigation. Information potentially obtained during further investigative activities, which were beyond the scope of this SSI, could result in a modification of the findings stated above. This report has been prepared in accordance with generally accepted site investigation practices and a degree of care and skill exercised by other environmental consulting firms undertaking similar studies at the same time in the same geographical area. No other warranty, expressed or implied, is made.

10.0 REFERENCES

Lyons, John B. et. Al., Geologic Map of New Hampshire, 1997.

New Hampshire Department of Environmental Services Web-Based Data Retrieval System, various reports, correspondence, and well records reviewed by StoneHill.

TABLES

<u>Table 1</u> Groundwater Elevation Data

North Hampton Municipal Center 233 Atlantic Avenue North Hampton, New Hampshire

Monitoring Well	Well Casing ID	Well Depth	Stickup Height	Elevation	Measurement Date	Depth to Groundwater	Groundwater Elevation
	(inches)	(feet)	(feet)	(feet)		(feet)	(feet)
MW-2	2	12.1	-0.3	101.13	04/28/21	7.85	93.28
					05/17/21	8.02	93.11
					08/26/21	7.37	93.76
MW-2R	4	30.2	-0.3	100.45	04/28/21	12.17**	88.28
					05/17/21	6.81	93.64
					08/26/21	6.82	93.63
MW-3R	4	28.0	-0.3	101.64	04/28/21	8.95	92.69
					05/17/21	9.16	92.48
					08/26/21	8.50	93.14
MW-4R	4	39.2	-0.3	100.73	04/28/21	8.44	92.29
					05/17/21	8.53	92.20
					08/26/21	8.17	92.56
MW-5	2	12.09	-0.3	98.42	04/28/21	6.36	92.06
					05/17/21	6.56	91.86
					08/26/21	6.26	92.16
MW-6	2	13.65	-0.3	100.77	04/28/21	8.36	92.41
					05/17/21	8.61	92.16
					08/26/21	8.10	92.67

Notes:

Level survey by StoneHill Environmental on 05/17/21 using a recoverable benchmark assigned an elevation of 100.00 feet on the northeast corner of the sewer grate in the front parking lot.

^{** -} Casing plug difficult to remove due to vacuum. Measured depth to water likely not accurate.

<u>TABLE 2</u> SUMMARY OF GROUNDWATER PFAS ANALYSES

North Hampton Municipal Complex 233 Atlantic Avenue North Hampton, New Hampshire

				Τ	Τ	1	Carbox	xylates/ Carboxylic	c Acids	Ι	<u> </u>	1	<u> </u>		Τ	<u> </u>	Sulfonates/S	ulfonic Acids	Ι	T			Sulfor	namides/Flourotel	emers		
	PER- AND POLYFLUORO SUBSTANCES (PFAS		Perfluorobutanoic Acid (PFBA)	Perfluoropentanoic Acid (PFPeA)	Perfluorohexanoic Acid (PFHxA)	Perfluoroheptanoic Acid (PFHpA)	Perfluorooctanoic Acid (PFOA)	Perfluorononaoic Acid (PFNA)	Perfluorodecanoic Acid (PFDA)	Perfluoroundecanoic Acid (PFUnA)	Perfluorododecanoic Acid (PFDoA)	Perfluorotridecanoic Acid (PFTrDA)	Perfluorotetradecanoic Acid (PFTeDA)	Perflourobutane Sulfonic Acid (PFBS)	Perflouropentane-1-sulfonic Acid (PFPeS)	Perfluorohexane sulfonoic Acid (PFHxS)	Perfluoroheptane Sulfonate (PFHpS)	Perfluorooctane Sulfonic Acid (PFOS)	Perfluorooctane Sulfonamide (PFOSA)	PerflouroNonanesulfonic Acid (PFNS)	Perfluorodecane Sulfonate (PFDS)	N-ethylperflourooctanesulfonamidoacetic acid (EtFOSAA)	N-methylperflourooctanesulfonamidoacetic acid (MeFOSAA)	4:2 Fluorotelomer Sulfonate	6:2 Fluorotelomer Sulfonate	8:2 Fluorotelomer sulfonate	Total PFOS + PFOA
	CAS Number		375-22-4	2706-90-3	307-24-4	375-85-9	335-67-1	375-95-1	335-76-2	2058-94-8	307-55-1	72629-94-8	376-06-7	375-73-5	2706-91-4	355-46-4	375-92-8	1763-23-1	754-91-6	68259-12-1	335-77-3	2991-50-6	2355-31-9	757124-72-4	27619-97-2	39108-34-4	NA
	NHDES AGQS**		ns	ns	ns	ns	12	11	ns	ns	ns	ns	ns	ns	ns	18	ns	15	ns	ns	ns	ns	ns	ns	ns	ns	70
	Location	Date		•	•	•	•	1			•	•			•					1							
	MW-2	5/17/2021	7.9	16	19	6.2	10	2.7	1.5 J	0.26 J	<2.1	<2.1	<2.1	9.9	2.8	22	0.59 J	34	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	0.73 J	2.8	44
	MW-2R	5/17/2021	3.8	4.0	5.9	2.5	4.8	1.1 J	<2.3	<2.3	<2.3	<2.3	<2.3	5.7	1.8 J	16	0.40 J	20	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	24.8
	MW-3R	5/17/2021	9.1	31	44	5.8	14	4.8	2.9	<2.4	<2.4	<2.4	<2.4	23	2.6	32	1.0 J	86	2.2 J	<2.4	<2.4	3.8	<2.4	<2.4	1.7 J	0.40 J	100
	MW-4R	5/17/2021	6.8	15	24	5.1	13	1.6 J	<2.1	<2.1	<2.1	<2.1	<2.1	34	15	110	4.7	180	0.26 J	<2.1	<2.1	<2.1	<2.1	<2.1	1.3 J	<2.1	193
	MW-5	5/17/2021	1.0 J	2.1J	2.2 J	0.95 J	2.3	0.99 J	<2.3	<2.3	<2.3	<2.3	<2.3	1.3 J	<2.3	2.3	<2.3	2.5	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	4.8
	MW-6	5/17/2021	5.0	7.4	10	2.1 J	5.8	2.4	1.4 J	<2.3	<2.3	<2.3	<2.3	7.4	1.5 J	17	0.36 J	26	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	31.8
Sanborn	Head & Associates Data:																										
	MW-3	4/30/2018	490	10	40	10	110	2.0	< 0.54					5.7		290	20	660			< 0.87				<10		770
	MW-4	4/30/2018	5.6	11	29	11	58	0.93 J	<k 0.54<="" td=""><td></td><td></td><td></td><td></td><td>11</td><td></td><td>150</td><td>2.9</td><td>26</td><td></td><td></td><td>< 0.87</td><td></td><td></td><td></td><td><1.0</td><td></td><td>84</td></k>					11		150	2.9	26			< 0.87				<1.0		84
	MW-8	4/30/2018	63	<8.7	32	<4.7	53	<6.8	<5.4					<8.9		100	<7.7	400			<8.7				<10		453
	MW-10	8/23/2019	7.4	<4.57	14	<4.57	31	<4.57	<4.57	<4.57	<4.57	<4.57		7.3	<4.57	154	<4.57	9.4	<4.57	<4.57	<4.57	<4.57	<4.57	<4.57	<4.57	<4.57	40
	SH-06W	8/22/2019	4.7	10	33	<4.59	139	<4.59	<4.59	<4.59	<4.59	<4.59		<4.59	<4.59	267	<4.59	29	<4.59	<4.59	<4.59	<4.59	<4.59	<4.59	<4.59	<4.59	168

Notes:

- 1. The current samples were collected by StoneHill on the date indicated. Earlier samples collected by others.
- 2. All concentrations are reported in ng/L, equivalent to parts per trillion (ppt), except where indicated.
- 3. "<X" indicates that the parameter was not detected at the specified reporting limit X.
- 4. Concentrations in Bold indicate a detection.
- 5. Bold and Shaded indicate exceedances of applicable AGQS.
- 6. "ns" indicates that no standard is established for the compound.
- 7. "--" indicates the parameter was not analyzed.
- 8. "J" indicates estimated concentration between EDL and RDL.9. The current analyses were performed by Absolute Resource Associates via EPA Method 537.1 (mod) for PFAS.
- 10. Sanborn Head & Associates analyses were performed by Vista Analytical Laboratory (Vista) by USEPA Method 537 (mod) for PFAS.

TABLE 3 SUMMARY OF SURFACE WATER PFAS ANALYSES

North Hampton Municipal Complex 233 Atlantic Avenue North Hampton, New Hampshire

			_	_	_	Carbo	xylates/ Carboxylic	Acids	,							Sulfonates/S	ulfonic Acids		_			Sulfor	namides/Flourotel	emers		
PER- AND POLYFLU SUBSTANCES (Perfluorobutanoic Acid (PFBA)	Perfluoropentanoic Acid (PFPeA)	Perfluorohexanoic Acid (PFHxA)	Perfluoroheptanoic Acid (PFHpA)	Perfluorooctanoic Acid (PFOA)	Perfluorononaoic Acid (PFNA)	Perfluorodecanoic Acid (PFDA)	Perfluoroundecanoic Acid (PFUnA)	Perfluorododecanoic Acid (PFDoA)	Perfluorotridecanoic Acid (PFTrDA)	Perfluorotetradecanoic Acid (PFTeDA)	Perflourobutane Sulfonic Acid (PFBS)	Perflouropentane-1-sulfonic Acid (PFPeS)	Perfluorohexane sulfonoic Acid (PFHxS)	Perfluoroheptane Sulfonate (PFHpS)	Perfluorooctane Sulfonic Acid (PFOS)	Perfluorooctane Sulfonamide (PFOSA)	PerflouroNonanesulfonic Acid (PFNS)	Perfluorodecane Sulfonate (PFDS)	N-ethylperflourooctanesulfonamidoacetic acid (EtFOSAA)	N-methylperflourooctanesulfonamidoacetic acid (MeFOSAA)	4:2 Fluorotelomer Sulfonate	6:2 Fluorotelomer Sulfonate	8:2 Fluorotelomer sulfonate	Total PFOS + PFOA
CAS Number	oer	375-22-4	2706-90-3	307-24-4	375-85-9	335-67-1	375-95-1	335-76-2	2058-94-8	307-55-1	72629-94-8	376-06-7	375-73-5	2706-91-4	355-46-4	375-92-8	1763-23-1	754-91-6	68259-12-1	335-77-3	2991-50-6	2355-31-9	757124-72-4	27619-97-2	39108-34-4	NA
NHDES AGQ	QS**	ns	ns	ns	ns	12	11	ns	ns	ns	ns	ns	ns	ns	18	ns	15	ns	ns	ns	ns	ns	ns	ns	ns	ns
Location	Date																									
SW-1	8/23/2019	7.6	9.5	23	9.5	41	<4.63	<4.63	<4.63	<4.63	<4.63		8.7	<4.63	130	<4.63	102	<4.63	<4.63	<4.63	<4.63	<4.63	<4.63	<4.63	<4.63	143
	6/3/2021	5.6	6.3	17	7.5	34	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	5.9	<1.9	82	<1.9	71	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	105
SW-2	6/3/2021	<1.9	<1.9	<1.9	<1.9	6.7	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	2.0	<1.9	8.1	<1.9	2.1	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	8.8
SW-3	6/3/2021	31	120	85	24	73	9.5	4.4	<1.9	<1.9	<1.9	<1.9	45	95	890	44	1,100	21	<1.9	<1.9	<1.9	<1.9	<1.9	8.4	2.2	1,173

Notes:

- 1. The current samples were collected by StoneHill on the date indicated. Earlier samples collected by others.
- 2. All concentrations are reported in ng/L, equivalent to parts per trillion (ppt), except where indicated.
- 3. "<X" indicates that the parameter was not detected at the specified reporting limit X.
- 4. Concentrations in Bold indicate a detection.
- 5. Bold and Shaded indicate exceedances of applicable AGQS.
- 6. "ns" indicates that no standard is established for the compound.
- 7. "--" indicates the parameter was not analyzed.
- 8. The current analyses were performed by Absolute Resource Associates via EPA Method 537.1. (mod) for PFAS.
- 9. The SW-1 sample collected on 8.23/2019 was collected by Sanborn Head & Associates, analyses were performed by Vista Analytical Laboratory (Vista) by USEPA Method 537 (mod) for PFAS.
- 10. Surface water quality standards (SWQS) have not been developed for PFAS at this time. AGQS is being used for comparison purposes.

TABLE 4 SUMMARY OF WATER SUPPLY WELL PFAS ANALYSES

North Hampton Municipal Complex 233 Atlantic Avenue North Hampton, New Hampshire

						Carbox	ylates/ Carboxyli	c Acids								Sulfonates/S	Sulfonic Acids					Sulfo	onamides/Flourote	lemers		
PER- AND POLYFLUORO SUBSTANCES (PFA		Perfluorobutanoic Acid (PFBA)	Perfluoropentanoic Acid (PFPeA)	Perfluorohexanoic Acid (PFHxA)	Perfluoroheptanoic Acid (PFHpA)	Perfluorooctanoic Acid (PFOA)	Perfluorononaoic Acid (PFNA)	Perfluorodecanoic Acid (PFDA)	Perfluoroundecanoic Acid (PFUnA)	Perfluorododecanoic Acid (PFDoA)	Perfluorotridecanoic Acid (PFTrDA)	Perfluorotetradecanoic Acid (PFTeDA)	Perflourobutane Sulfonic Acid (PFBS)	Perflouropentane-1-sulfonic Acid (PFPeS)	Perfluorohexane sulfonoic Acid (PFHxS)	Perfluoroheptane Sulfonate (PFHpS)	Perfluorooctane Sulfonic Acid (PFOS)	Perfluorooctane Sulfonamide (PFOSA)	PerflouroNonanesulfonic Acid (PFNS)	Perfluorodecane Sulfonate (PFDS)	N-ethylperflourooctanesulfonamidoacetic acid (EtFOSAA)	N-methylperflourooctanesulfonamidoacetic acid (MeFOSAA)	4:2 Fluorotelomer Sulfonate	6:2 Fluorotelomer Sulfonate	8:2 Fluorotelomer sulfonate	Total PFOS + PFOA
CAS Number		375-22-4	2706-90-3	307-24-4	375-85-9	335-67-1	375-95-1	335-76-2	2058-94-8	307-55-1	72629-94-8	376-06-7	375-73-5	2706-91-4	355-46-4	375-92-8	1763-23-1	754-91-6	68259-12-1	335-77-3	2991-50-6	2355-31-9	757124-72-4	27619-97-2	39108-34-4	
NHDES AGQS**		ns	ns	ns	ns	12	11	ns	ns	ns	ns	ns	ns	ns	18	ns	15	ns	ns	ns	ns	ns	ns	ns	ns	7
Location	Date		1	· · · · · · · · · · · · · · · · · · ·			,	1	1		1			1		1		1	T	-		1	T	T	1	
Map 7 Lot 149	6/3/2021	2.1	5.9	14	3.8	44	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	5.6	4.5	44	<1.7	16	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	2.0	<1.7	•
Map 7 Lot 77	6/3/2021	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<

Notes:

- 1. The current samples were collected by StoneHill on the date indicated. Earlier samples collected by others.
- 2. All concentrations are reported in ng/L, equivalent to parts per trillion (ppt), except where indicated.
- 3. "<X" indicates that the parameter was not detected at the specified reporting limit X.
- 4. Concentrations in Bold indicate a detection.
- 5. Bold and Shaded indicate exceedances of applicable AGQS.
- 6. "ns" indicates that no standard is established for the compound.
- 7. "--" indicates the parameter was not analyzed.
- 8. "J" indicates estimated concentration between EDL and RDL. 9. "*" indicates this analogue showed recovery outside of the acceptance area.
- 10. The current analyses were performed by Absolute Resource Associates via EPA Method 537.1 (mod) for PFAS.

TABLE 5 SUMMARY OF SOIL PFAS ANALYSES

North Hampton Municipal Complex 233 Atlantic Avenue North Hampton, New Hampshire

	Ī					Carbox	xylates/ Carboxylic	Acids								Sulfonates/S	Sulfonic Acids				1	Sulfor	namides/Flourotel	emers		1
PER- AND POLYFLUOROA SUBSTANCES (PFAS		Perfluorobutanoic Acid (PFBA)	Perfluoropentanoic Acid (PFPeA)	Perfluorohexanoic Acid (PFHxA)	Perfluoroheptanoic Acid (PFHpA)	Perfluorooctanoic Acid (PFOA)	Perfluorononaoic Acid (PFNA)	Perfluorodecanoic Acid (PFDA)	Perfluoroundecanoic Acid (PFUnA)	Perfluorododecanoic Acid (PFDoA)	Perfluorotridecanoic Acid (PFTrDA)	Perfluorotetradecanoic Acid (PFTeDA) (PFTA)	Perflourobutane Sulfonic Acid (PFBS)	Perflouropentane-1-sulfonic Acid (PFPeS)	Perfluorohexane sulfonoic Acid (PFHxS)	Perfluoroheptane Sulfonate (PFHpS)	Perfluorooctane Sulfonic Acid (PFOS)	Perfluorooctane Sulfonamide (PFOSA)	PerflouroNonanesulfonic Acid (PFNS)	Perfluorodecane Sulfonate (PFDS)	N-ethylperflourooctanesulfonamidoacetic acid	N-methylperflourooctanesulfonamidoacetic acid (MeFOSAA)	4:2 Fluorotelomer Sulfonate	6:2 Fluorotelomer Sulfonate	8:2 Fluorotelomer sulfonate	Total PFOS + PFOA
CAS Number		375-22-4	2706-90-3	307-24-4	375-85-9	335-67-1	375-95-1	335-76-2	2058-94-8	307-55-1	72629-94-8	376-06-7	375-73-5	2706-91-4	355-46-4	375-92-8	1763-23-1	754-91-6	68259-12-1	335-77-3	2991-50-6	2355-31-9	757124-72-4	27619-97-2	39108-34-4	NA
NHDES Res. DCRB		ns	ns	ns	ns	500	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	500	ns	ns	ns	ns	ns	ns	ns	ns	ns
NHDES Maint. Worker DO	CRB	ns	ns	ns	ns	4,300	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	4,300	ns	ns	ns	ns	ns	ns	ns	ns	ns
Location	Date					•	•					•					1		1	•		•	•	•		
Storm Drain Sediment	5/17/2021	380 J	450 J	<0.16	< 0.17	<0.20	<0.27	< 0.24	< 0.25	< 0.19	<0.22	< 0.30	< 0.17	< 0.26	< 0.30	< 0.17	<0.27	< 0.20	<0.24	<0.27						< 0.27
Sanborn Head & Associates Data:																										
SH-02 (5-6 ft bgs)	8/21/2019	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95	<1.95
SH-03 (8-9 ft bgs)	8/21/2019	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
SH-04 (10.5-11.5 ft bgs)	8/21/2019	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92	<1.92
SH-05 (10-10.5 ft bgs)	8/21/2019	< 2.00	< 2.00	< 2.00	<2.00	< 2.00	<2.00	< 2.00	< 2.00	< 2.00	< 2.00	<2.00	< 2.00	<2.00	<2.00	< 2.00	<2.00	< 2.00	<2.00	< 2.00	< 2.00	< 2.00	< 2.00	< 2.00	< 2.00	< 2.00

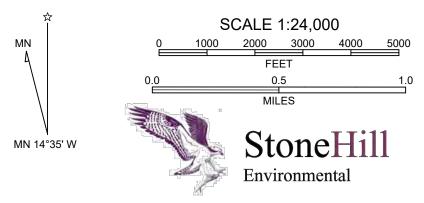
Notes:

1. NHDES Res. DCRB" and "Maint. Worker DCRB" indicate the direct contact risk-based (DCRB) screening level concentrations derived by the State of New Hampshire Environmental Health Program for PFOA are 0.5 mg/kg (4,300 ng/g) and 4.3 mg/kg (4,300 ng/g) for residential and maintenance workers, respectively, and are presented in a memorandum from David B. Larson, M.P.H. to John Regan, P.G., dated June 17, 2016 and titled "Direct Contact Risk-Based Soil Concentration, Perfluorooctanoic Acid, CAS #335-67-1". The screening levels for PFOS are 0.5 mg/kg (4,300 ng/g) and 4.3 mg/kg (4,300 n

- 2. All concentrations are reported in ng/Kg, equivalent to parts per trillion (ppt), except where indicated.
- 3. "<X" indicates that the parameter was not detected at the specified reporting limit X.
- 4. Concentrations in Bold indicate a detection.
- 5. Bold and Shaded indicate exceedances of applicable AGQS.
- 6. "ns" indicates that no standard is established for the compound.
- 7. "--" indicates the parameter was not analyzed.
- 8. "J" indicates estimated concentration between EDL and RDL.
- 9. "ft bgs" indicates feet below ground surface.
- 10. The current analyses were performed by Absolute Resource Associates via EPA Method 537.1 (mod) for PFAS.
- 11. Sanborn Head & Associates analyses were performed by Vista Analytical Laboratory (Vista) by USEPA Method 537 (mod) for PFAS.

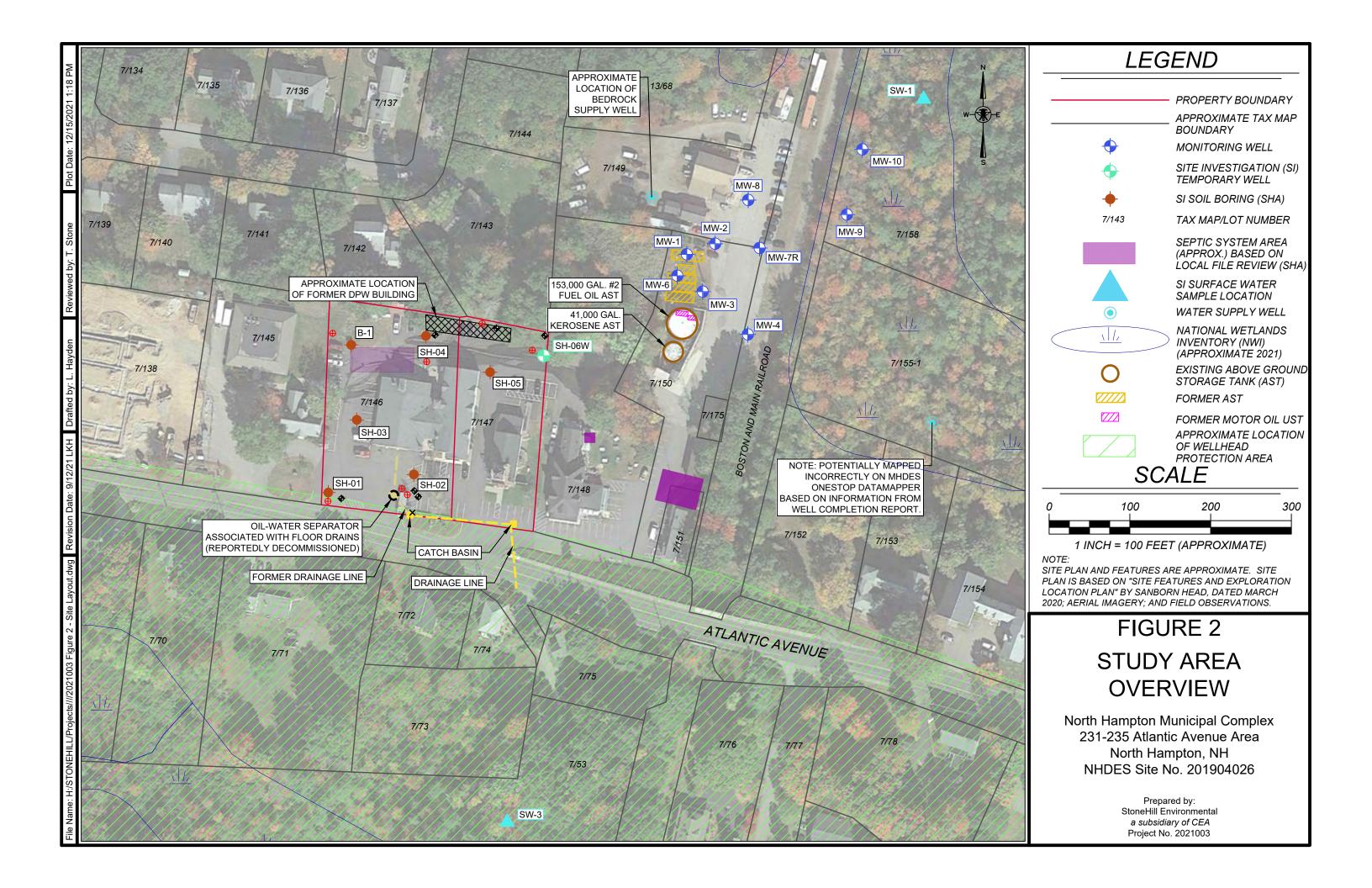

<u>Table 6</u> Properties within 1,000-foot Radius

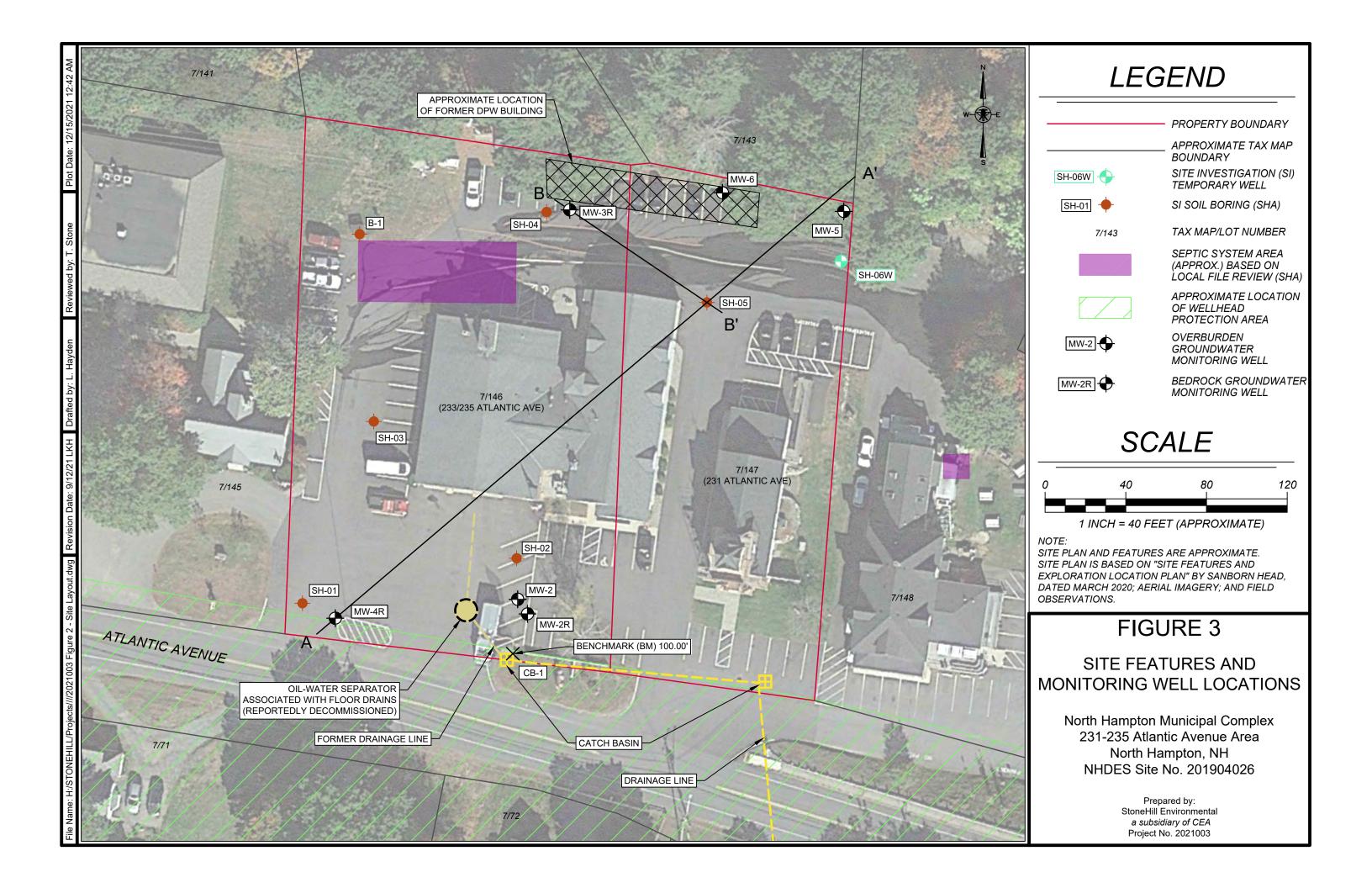
North Hampton Municipal Center 233 Atlantic Avenue North Hampton, New Hampshire

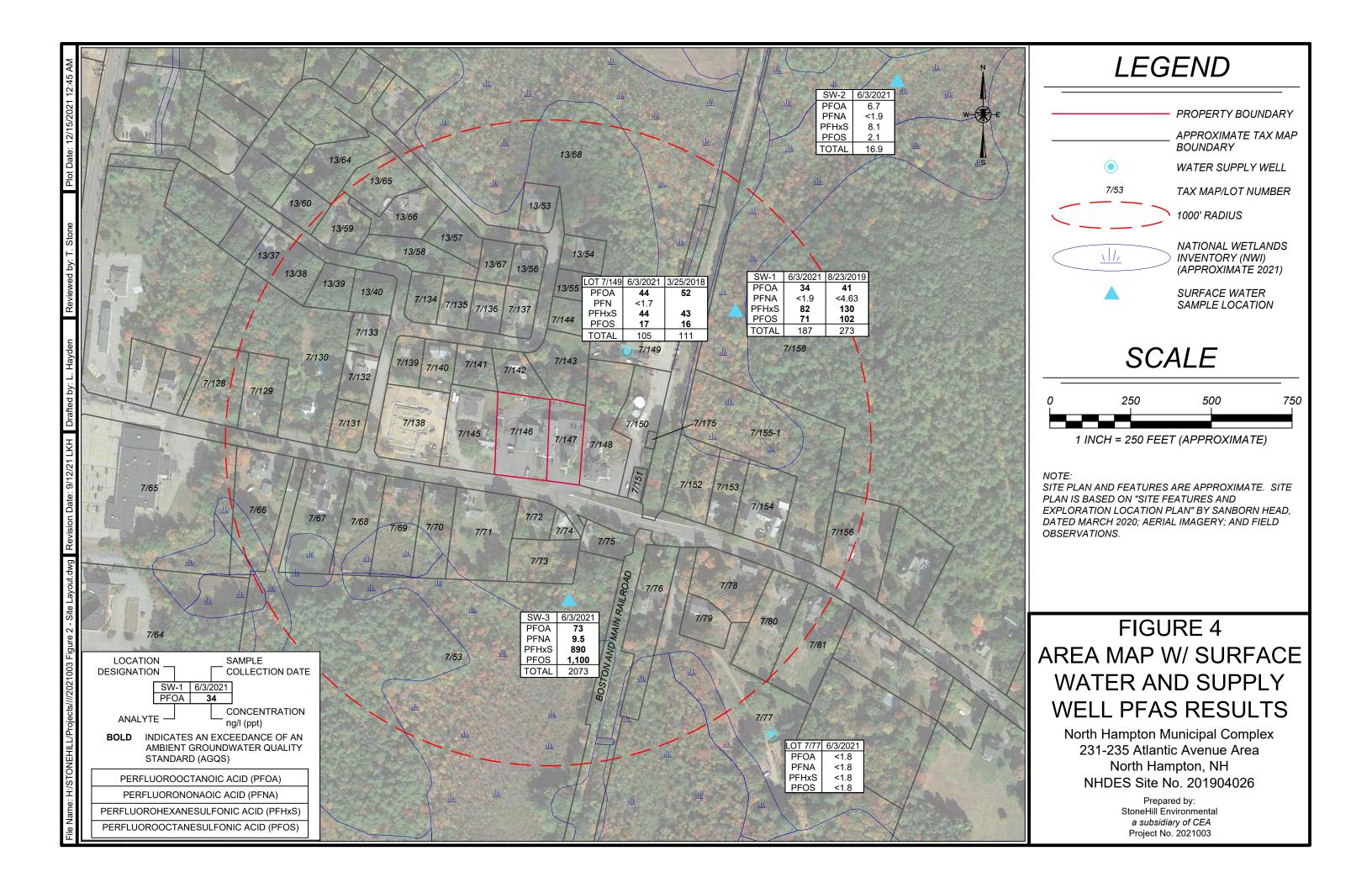

Address	Map/Lot	Owner Name	Owner Mailing Address (if different than site address)	Property Use	Water Supply
33-49 Lafayette Road, North Hampton, NH	7/53	W/S North Hampton Properties OP LLC	33 Boylston Street, Suite 3000, Chestnut Hill, MA 02467	Uundeveloped/Plaza	Aguarion Water Co
228 Atlantic Avenue, North Hampton, NH	7/66	Dean E Stevens Trustee	69 Lafayette Road, North Hampton, NH 03862	Residential	" "
224 Atlantic Avenue, North Hampton, NH	7/67	David & Irene Tomkinson	224 Atlantic Avenue, North Hampton, NH 03862	Residential	II .
222 Atlantic Avenue, North Hampton, NH	7/68	Michael & Sandra Queenan	222 Atlantic Avenue, North Hampton, NH 03862	Residential	II .
220 Atlantic Avenue, North Hampton, NH	7/69	Wallace & Kathleen Kilgore	220 Atlantic Avenue, North Hampton, NH 03862	Residential	"
218 Atlantic Avenue, North Hampton, NH	7/70	John J & Deborah Anne Sillay Trustees	218 Atlantic Avenue, North Hampton, NH 03862	Residential	II .
216 Atlantic Avenue, North Hampton, NH	7/71	Jooseph & Marcella Ormsby	216 Atlantic Avenue, North Hampton, NH 03862	Residential	11
214 Atlantic Avenue, North Hampton, NH	7/72	David & Crystal Adams	214 Atlantic Avenue, North Hampton, NH 03862	Residential	"
Atlantic Ave Rear, North Hampton, NH	7/73	Kelly Carolyn A Burgess	210 Atlantic Avenue, North Hampton, NH 03862	Vacant Land	II .
212 Atlantic Avenue, North Hampton, NH	7/74	Kelly Carolyn A Burgess	210 Atlantic Avenue, North Hampton, NH 03862	Residential	11
210 Atlantic Avenue, North Hampton, NH	7/75	Michael C. Kelley	210 Atlantic Avenue, North Hampton, NH 03862	Residential	"
208 Atlantic Avenue, North Hampton, NH	7/76	208 Atlantic LLC	6 Squier Drive North Hampton, NH 03862	Office bldg/Fm Railroad Station	"
206B Atlantic Avenue, North Hampton, NH	7/77	Philip Thayer	206B Atlantic Avenue, North Hampton, NH 03862	Residential	On-Site Well
206 Atlantic Avenue, North Hampton, NH	7/78	Decko Holdings LLC	79 Exeter Road, North Hampton, NH 03862	Residential	Aguarion Water Co
206A Atlantic Avenue, North Hampton, NH	7/79	Charlene Genest Trustee	206A Atlantic Avenue, North Hampton, NH 03862	Residential	" "
204 Atlantic Avenue, North Hampton, NH	7/80	Jason & Tina Saltmarsh	204 Atlantic Avenue, North Hampton, NH 03862	Residential	"
202 Atlantic Avenue, North Hampton, NH	7/81	Donald A Robin	202 Atlantic Avenue, North Hampton, NH 03862	Residential	"
247 Atlantic Avenue, North Hampton, NH	7/128	E Dean & Cora A Stevens Trust	69 Lafayette Road, North Hampton, NH 03862	Undeveloped	II .
245 Atlantic Avenue, North Hampton, NH	7/129	Peter & Allison Doyle	245 Atlantic Avenue, North Hampton, NH 03862	Residential	"
243 Atlantic Avenue, North Hampton, NH	7/130	Christine Catherine Hayes	243 Atlantic Avenue, North Hampton, NH 03862	Residential	"
2 Alden Drive, North Hampton, NH	7/131	Deborah M Paul Trustee	50 Watchic Road #19, Standish, ME 04084	Vacant Land	"
4 Alden Drive, North Hampton, NH	7/132	Kimberley Daly Trustee	4 Alden Drive, North Hampton, NH 03862	Residential	II .
6 Alden Drive, North Hampton, NH	7/133	Bob & Hope Miller Trustees	6 Alden Drive, North Hampton, NH 03862	Residential	II .
5 Alden Drive, North Hampton, NH	7/134	Christine M Neville	5 Alden Drive, North Hampton, NH 03862	Residential	II .
7 Hampshire Road, North Hampton, NH	7/135	Michael & Tamara Saal	7 Hampshire Road, North Hampton, NH 03862	Residential	II .
9 Hampshire Road, North Hampton, NH	7/136	Erin Van Dalinda Trustee	9 Hampshire Road, North Hampton, NH 03862	Residential	II .
11 Hampshire Road, North Hampton, NH	7/137	Donald & Nicole Corcoran	11 Hampshire Road, North Hampton, NH 03862	Residential	"
239 Atlantic Avenue, North Hampton, NH	7/138	Town of North Hampton	233 Atlantic Avenue, North Hampton, NH	Municipal playground?	"
2 Hampshire Road, North Hampton, NH	7/139	Patricia & Anthony Delyani	2 Hampshire Road, North Hampton, NH 03862	Residential	11
4 Hampshire Road, North Hampton, NH	7/140	Michael Gallagher	4 Hampshire Road, North Hampton, NH 03862	Residential	"
6 Hampshire Road, North Hampton, NH	7/141	James & Shannon Dawson Jr.	6 Hampshire Road, North Hampton, NH 03862	Residential	"
8 Hampshire Road, North Hampton, NH	7/142	Rebecca Kollmorgen Trustee	8 Hampshire Road, North Hampton, NH 03862	Residential	"
10 Hampshire Road, North Hampton, NH	7/143	Robert & Judith Fitta	10 Hampshire Road, North Hampton, NH 03862	Residential	"
237 Atlantic Avenue, North Hampton, NH	7/145	Town of North Hampton	233 Atlantic Avenue, North Hampton, NH 03862	Library	"
233/235 Atlantic Avenue, North Hampton, NH	7/146	Town of North Hampton	233 Atlantic Avenue, North Hampton, NH 03862	Fire Department	"
231 Atlantic Avenue, North Hampton, NH	7/147	Town of North Hampton	233 Atlantic Avenue, North Hampton, NH 03862	Town Hall	"
229 Atlantic Avenue, North Hampton, NH	7/148	Kutt Property Management LLC	229 Atlantic Avenue, North Hampton, NH 03862	Commercial/store	"
227A Atlantic Avenue, North Hampton, NH	7/149	Stuart M Spooner Trustee	3 Woodknoll Drive, North Hampton, NH 03862	office/storage	On-Site Well
227 Atlantic Avenue, North Hampton, NH	7/150	Lake Erie Biofuels LLC	1540 E Lake Road, Erie, PA 16511	Bulk Fuel Storage	Aquarion Water Co
225 Atlantic Avenue, North Hampton, NH	7/151	Dow Annex LLC	P.O. Box 294 North Hampton, NH 03862	Commercial	II .
		·			

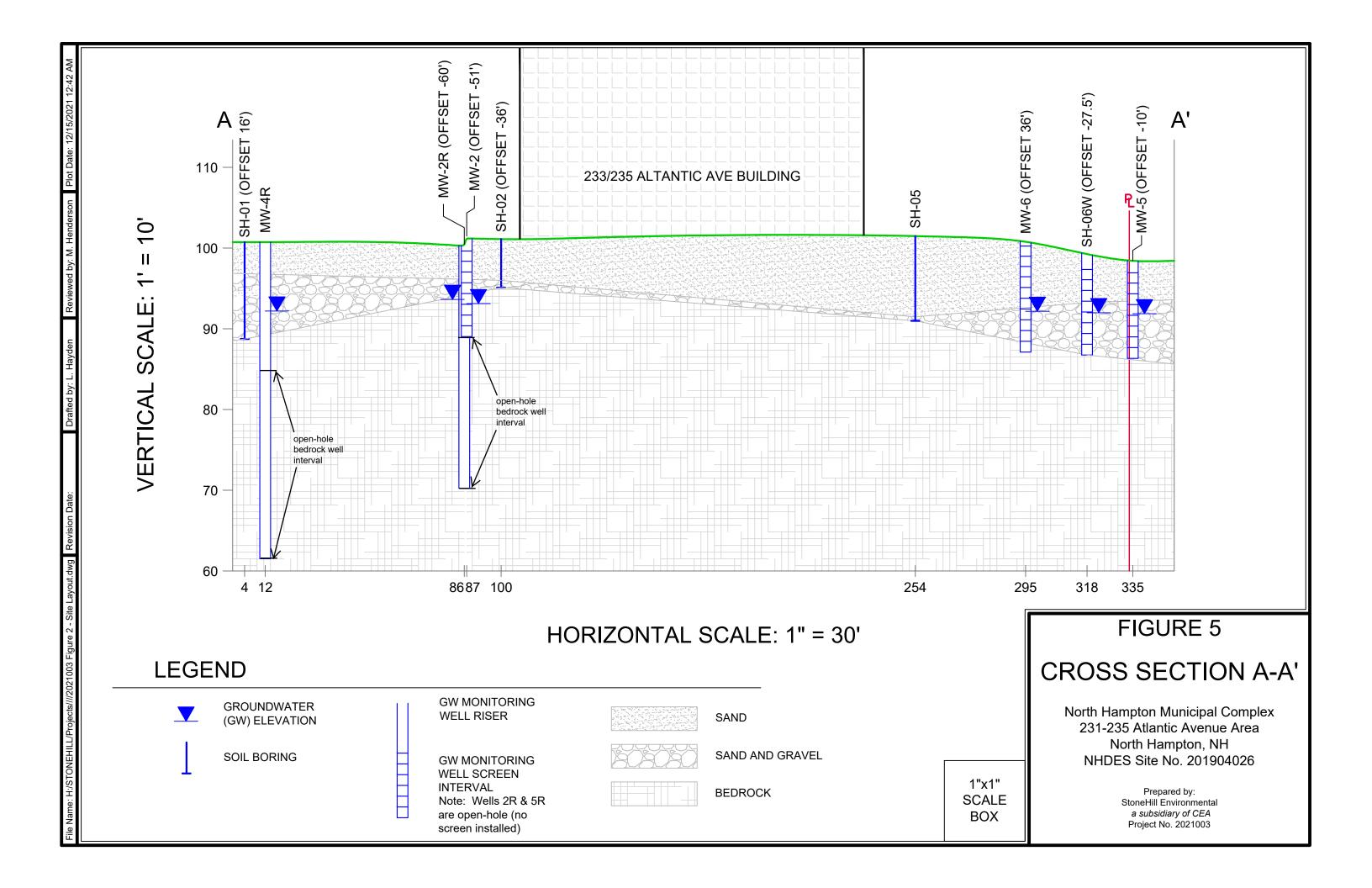
Address	Map/Lot	Owner Name	Owner Mailing Address (if different than site address)	Property Use	Water Supply
Atlantic Ave Blacksmith P, North Hampton, NH	7/152	State of New Hampshire	7 Hazen Drive P.O. Box 483, Concord, NH 03302	Vacant Land	II II
223 Atlantic Avenue, North Hampton, NH	7/153	Paul E McDavitt Trustee	223 Atlantic Avenue, North Hampton, NH 03862	Residential	"
221 Atlantic Avenue, North Hampton, NH	7/154	Edward & Jacqueline Kohlhase Trustees	66 Tuttle Lane Greenland, NH 03840	Residential	"
219 Atlantic Avenue, North Hampton, NH	7/155-1	Allen & Jill Brandt	219 Atlantic Avenue, North Hampton, NH 03862	Residential	"
217 Atlantic Avenue, North Hampton, NH	7/156	David & Cynthia Tufts	217 Atlantic Avenue, North Hampton, NH 03862	Residential	"
207 Atlantic Avenue, North Hampton, NH	7/158	Diane & Richard Jones Trustees	207 Atlantic Avenue, North Hampton, NH 03862	Residential	"
225A Atlantic Avenue, North Hampton, NH	7/175	Thera Research	P.O. Box 916, North Hampton, NH 03862	Barn	"
6 Glendale Road, North Hampton, NH	13/38	Rhonda Martin & Marilyn Henkel	6 Glendale Road, North Hampton, NH 03862	Residential	"
4 Glendale Road, North Hampton, NH	13/39	Kerry Whitten	4 Glendale Road, North Hampton, NH 03862	Residential	"
2 Glendale Road, North Hampton, NH	13/40	Kenneth & Eleanor Cormier	2 Glendale Road, North Hampton, NH 03862	Residential	"
1 Kimberly Drive, North Hampton, NH	13/53	Ronald & Gayle Moores Trustees	1 Kimberly Drive, North Hampton, NH 03862	Residential	"
16 Hampshire Road, North Hampton, NH	13/54	William & Juliette McCue Trustees	16 Hampshire Road, North Hampton, NH 03862	Residential	Aquarion Water Co
14 Hampshire Road, North Hampton, NH	13/55	Dale & Kimberly Rochford	14 Hampshire Road, North Hampton, NH 03862	Residential	"
15 Hampshire Road, North Hampton, NH	13/56	William & Elizabeth Needham Trustees	15 Hampshire Road, North Hampton, NH 03862	Residential	"
6 Kimberly Drive, North Hampton, NH	13/57	Thomas & Nancy Argue Trustees	6 Kimberly Drive, North Hampton, NH 03862	Residential	"
7 Alden Drive, North Hampton, NH	13/58	Rena Correia Trustee	7 Alden Drive, North Hampton, NH 03862	Residential	"
3 Glendale Road, North Hampton, NH	13/59	Jeffrey & Linda Hillier Trustees	3 Glendale Road, North Hampton, NH 03862	Residential	"
5 Glendale Road, North Hampton, NH	13/60	Paul & Jean Whitcomb Trustees	5 Glendale Road, North Hampton, NH 03862	Residential	"
10 Kimberly Drive, North Hampton, NH	13/65	Robert & Donna Garland	10 Kimberly Drive, North Hampton, NH 03862	Vacant Land	"
8 Kimberly Drive, North Hampton, NH	13/66	Dale & Judith Flemming Trustees	8 Kimberly Drive, North Hampton, NH 03862	Residential	II .
Kimberly Drive, North Hampton, NH	13/67	Thomas & Nancy Argue Trustees	6 Kimberly Drive, North Hampton, NH 03862	Vacant Land	"
Lafayette Road, North Hampton, NH	13/68	Glenn Martin	196 Atlantic Avenue, North Hampton, NH 03862	Vacant Land	"

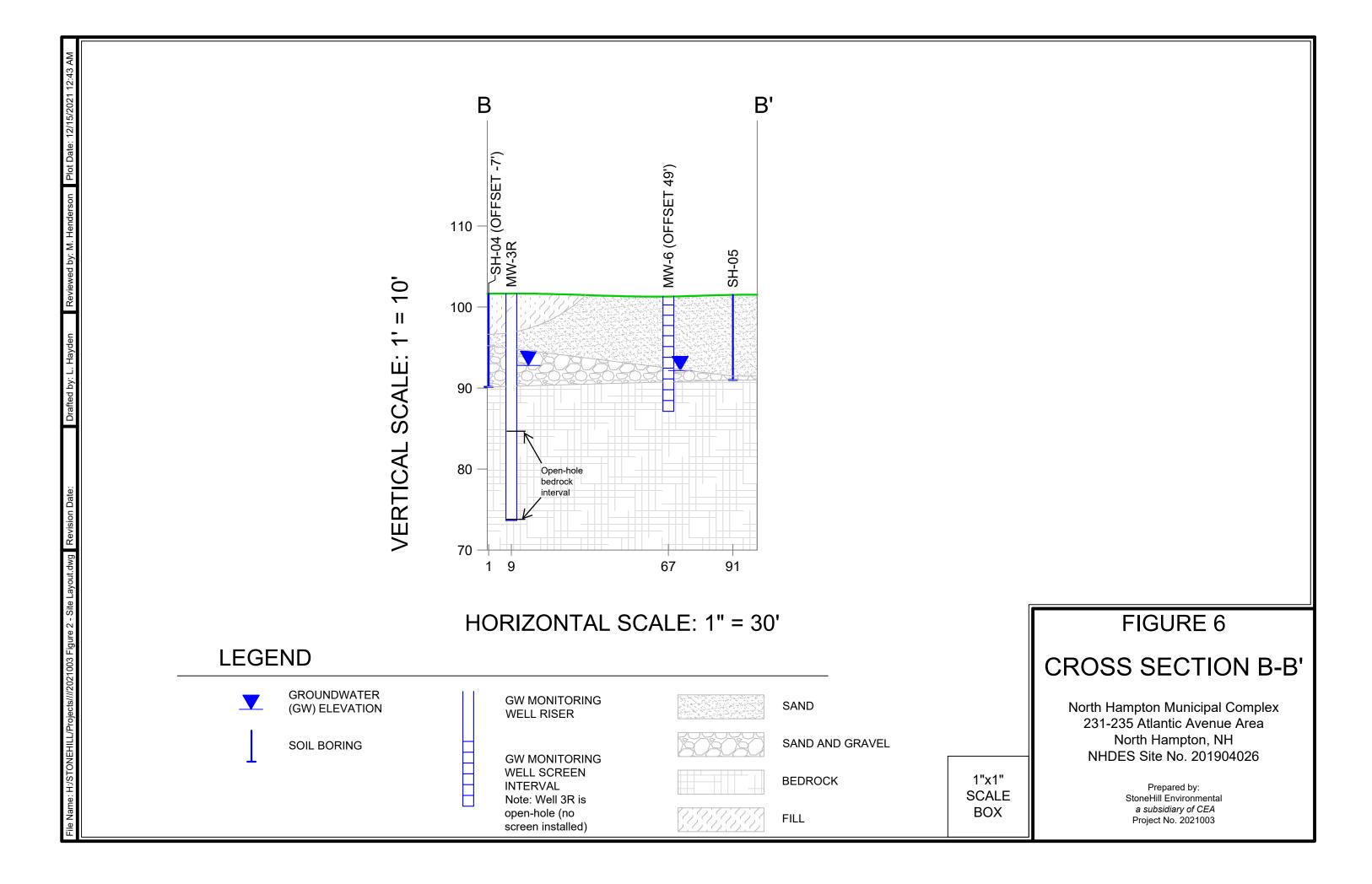
FIGURES

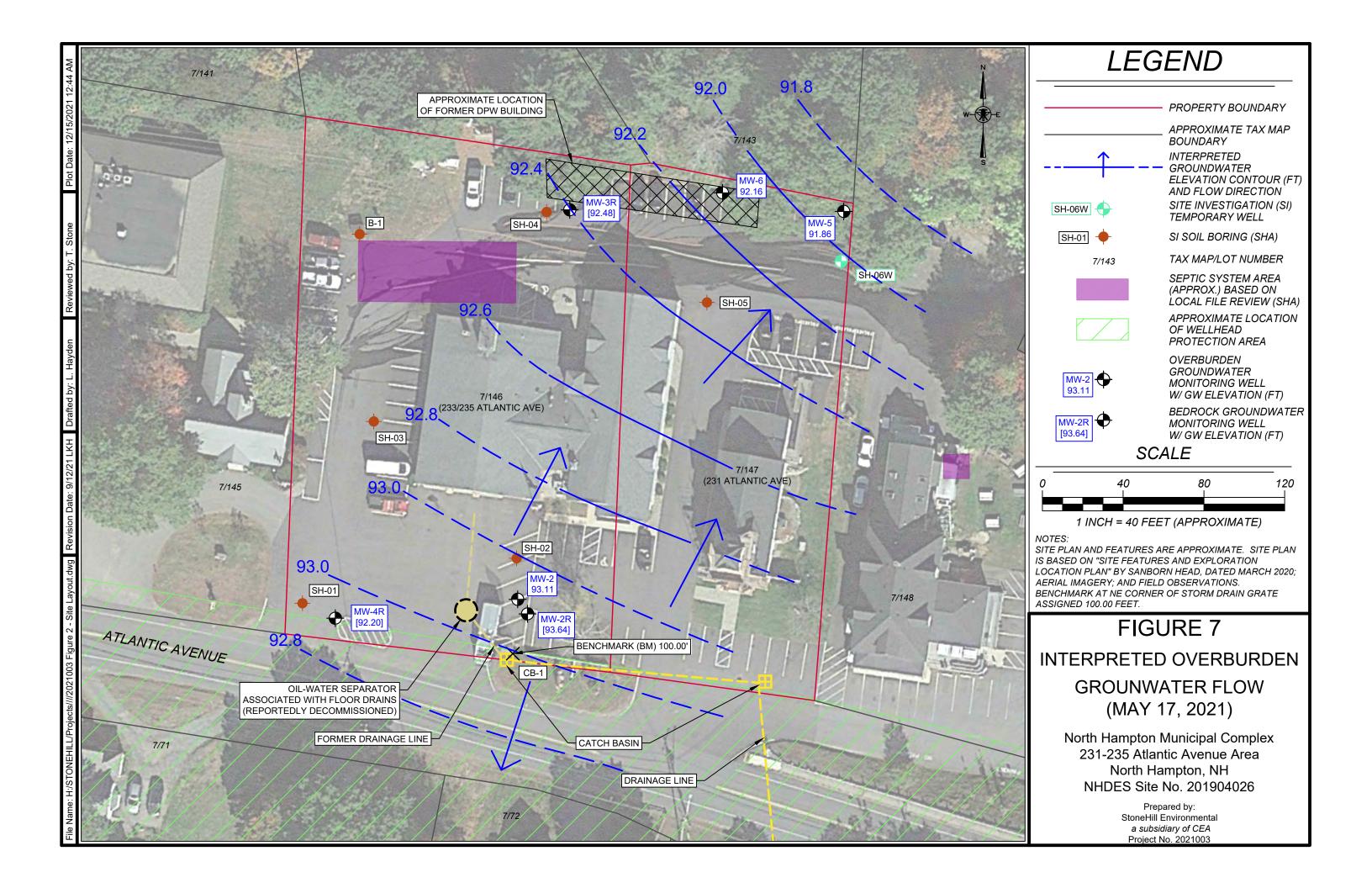

HAMPTON, NH, MA Topographic 2018 USGSX24K19146 North American Vertical Datum of 1988

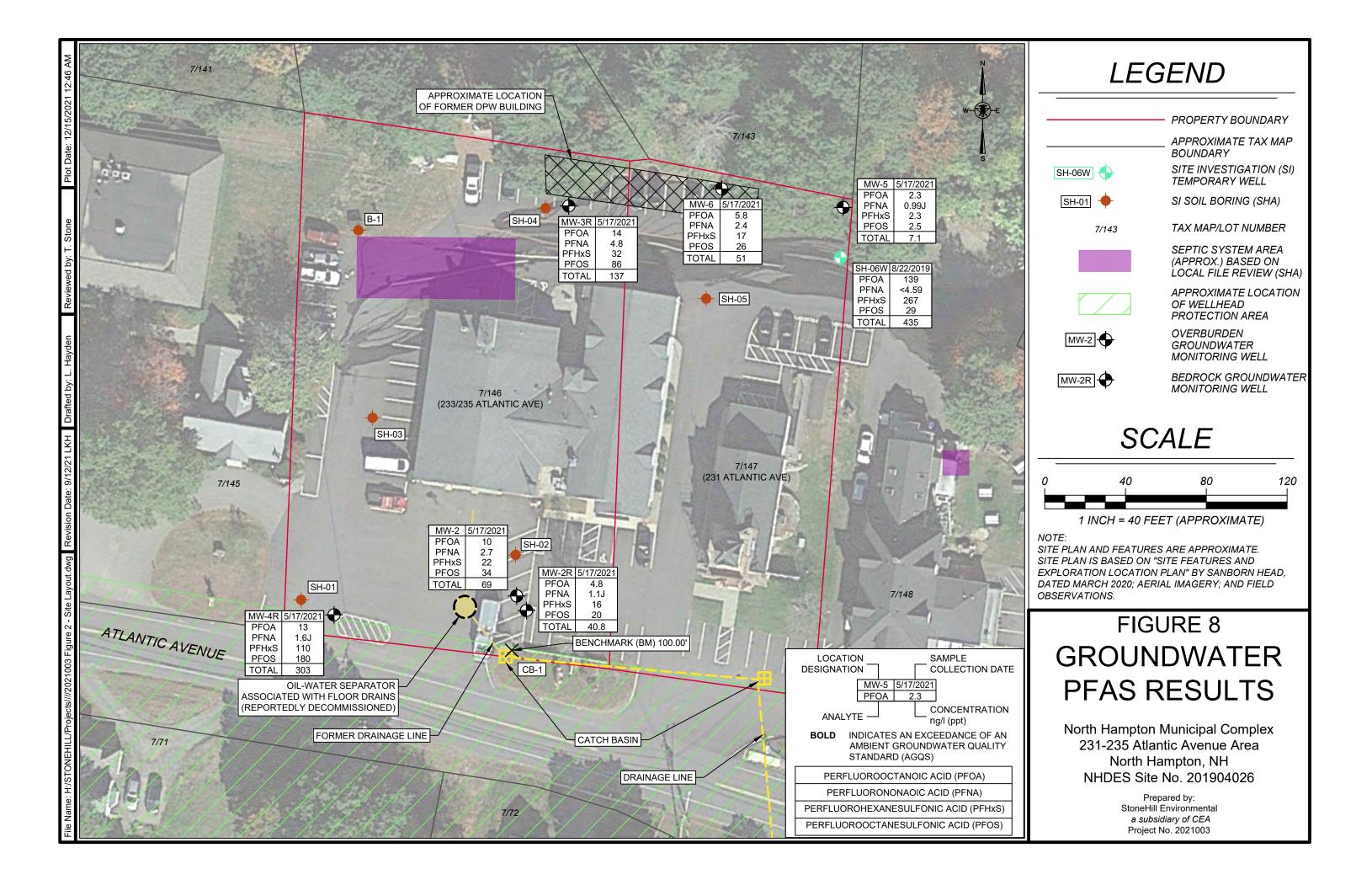



600 State Street, Suite 2, Portsmouth, NH 03801 1-800-639-4503 Site Coordinates: 42° 58' 23.8" N 70° 49' 46.5" W


Site Location: 231-235 Atlantic Avenue North Hampton, NH


Figure 1
Site Locus Map





APPENDIX A

Boring Logs/Monitoring Well Construction Data

StoneHill PROJECT BORING/WELL NO: B-1 Environmental **North Hampton Muncipal Center** Page 1 of 1 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone BORING CO: DRILLING METHOD: Air hammer STICKUP HT: Geosearch BORING LOCATION: NW of complex near dumpster FORFMAN: Christopher Stamas CASING ELEV: GEOLOGIST: M. Eyster DATE START: 4/19/2021 **GROUND ELEV:** DATE END: 4/19/2021 SAMPLER **GROUNDWATER** WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: HEAD-ᇤ FALL: WT: SPACE SAMPLE SCREEN DEPTH NOTES Casing DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION (ppm) REC/PEN Surface: Grass NUMBER Drill (min/ft) (FT.) 6 inches B-1 0 - 15 feet: Light grey, weathered schist, powdery, some Gravel. Dry. (0-15 ft) 2 2 3 3 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 14 14 15 15 End boring at 15 ft bgs. No well installed. 16 16 17 17 18 18 19 19 **GRANULAR SOILS** COHESIVE SOILS NOTES: LEGEND CONSISTENCY ft. = feet - Bentonite BLOWS/ft. **DENSITY** BLOWS/ft. - Cement 0-4 V.LOOSE <2 V.SOFT 4-10 LOOSE 2-4 SOFT bgs = below ground surface - Backfill - Sand 10-30 M.DENSE 4-8 M.STIFF - Well screen 30-50 DENSE 8-15 STIFF \subseteq - Water Table >50 V.DENSE 15-30 V.STIFF >30

StoneHill PROJECT BORING/WELL NO: B(MW)-2 **Environmental North Hampton Municipal Complex** Page 1 of 1 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone DRILLING METHOD: 4.25" ID hollow stem auger BORING CO: STICKUP HT: flush Geosearch FORFMAN: Christopher Stamas BORING LOCATION: S side of complex, N of MW-2R CASING FLEV 101.13 ft GEOLOGIST: M. Eyster DATE START: 4/19/2021 DATE END: 4/19/2021 **GROUND ELEV:** NA SAMPLER **GROUNDWATER** WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: HEAD-4/28/2021 7.85 BTOC (PVC) 7 davs ᇤ FALL: WT: SPACE SAMPLE Casing SCREEN DEPTH roadbox SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION NOT (ppm) REC/PEN Drill (min/ft) Surface: Pavement NUMBER (FT.) 6 inches 0 - 12 feet: Brown, fine to coarse SAND, some Silt and Gravel. B-2 (0-12 ft)2 2 3 3 5 6 6 8 8 ∇ 9 9 10 10 11 11 12 12 End boring at 12 ft bgs. Set well at 12 ft bgs. 13 Installed two-inch diameter, 0.01-inch slot PVC screen between 7 13 and 12 ft, and two-inch diameter PVC riser between 0 and 7 ft. Filled with cuttings between 0.5 to 5 ft bgs and installed filter sand 14 14 between 6 to 12 ft bgs, and bentonite chips between 5 to 6 ft bgs. 15 Completed well with protective roadbox flush with ground surface 15 set in concrete pad. 16 16 17 17 18 18 19 19 **GRANULAR SOILS** COHESIVE SOILS NOTES: LEGEND CONSISTENCY ft. = feet - Bentonite BLOWS/ft. **DENSITY** BLOWS/ft. - Cement 0-4 VIOOSE <2 V SOFT LOOSE 2-4 SOFT bgs = below ground surface - Backfill 4-10 - Sand 10-30 M.DENSE 4-8 M.STIFF - Well screen 30-50 DENSE 8-15 STIFF - Water Table >50 V.DENSE 15-30 V.STIFF >30

StoneHill PROJECT BORING/WELL NO: B(MW)-5 **Environmental North Hampton Municipal Complex** Page 1 of 1 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone BORING CO: DRILLING METHOD: 4.25" ID hollow stem auger STICKUP HT: flush Geosearch BORING LOCATION: NE side of complex, E of MW-6 FORFMAN: CASING FLEV: 98.42 ft Christopher Stamas GEOLOGIST: M. Eyster DATE START: 4/20/2021 **GROUND ELEV:** DATE END: 4/20/2021 NA SAMPLER **GROUNDWATER** WELL COMPLETION Method Used TYPE: Acetate Sleeves DATE DEPTH STABILIZATION TIME FIELD DETAILS REFERENCE DIAMETER: HEAD-4/28/2021 6.36 BTOC (PVC) 7 davs ᇤ FALL: WT. SPACE SAMPLE SCREEN DEPTH Casing roadbox DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION NOT (ppm) REC/PEN Surface: Grass NUMBER Drill (min/ft) (FT.) 6 inches 2 2 3 3 5 6 6 ∇ 7 8 8 22 8 - 9 feet: Brown, fine to coarse SAND and clayey SILT, some Gravel. 9 B-5 29 9 1.5' / 2' (8-10 ft) 34 9 - 10 feet: Brown, fine to coarse SAND and SILT, some Gravel. 10 50 10 11 11 12 12 End boring at 12 ft bgs. Set well at 12 ft bgs. Installed two-inch diameter, 0.01-inch slot PVC screen between 7 13 13 and 12 ft, and two-inch diameter PVC riser between 0 and 7 ft. 14 Filled with cuttings between 0.5 to 5 ft bgs and installed filter sand 14 between 6 to 12 ft bgs, and bentonite chips between 5 to 6 ft bgs. 15 Completed well with protective roadbox flush with ground surface 15 set in concrete pad. 16 16 17 17 18 18 19 19 **GRANULAR SOILS** COHESIVE SOILS NOTES: Lab sample collected from 8-9 ft bgs LEGEND CONSISTENCY ft. = feet - Bentonite BLOWS/ft. DENSITY BLOWS/ft. 0-4 VIOOSE <2 V SOFT - Cement LOOSE SOFT bgs = below ground surface - Backfill 4-10 2-4 - Sand 10-30 M.DENSE 4-8 M.STIFF - Well screen 30-50 DENSE 8-15 STIFF - Water Table >50 V.DENSE 15-30 V.STIFF ∇ >30

StoneHill PROJECT BORING/WELL NO: B(MW)-6 **Environmental North Hampton Municipal Complex** Page 1 of 1 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Evster CHKD BY: T. Stone BORING CO: DRILLING METHOD: 4.25"ID hollow stem auger STICKUP HT: flush Geosearch FOREMAN: **Christopher Stamas** BORING LOCATION: NE side of complex, W of MW-5 CASING ELEV: 100.765 ft GROUND ELEV: GEOLOGIST: M. Eyster DATE START: 4/19/2021 DATE END: 4/19/2021 NA GROUNDWATER SAMPLER WELL COMPLETION TYPE: Method Used STABILIZATION TIME DEPTH FIFI D DATE REFERENCE DETAILS DIAMETER: HEAD-4/28/2021 BTOC (PVC) Ē 8.36 7 davs FALL: WT: SPACE SAMPLE SCREEN DEPTH roadbox Casing NOTES SAMPLE DESCRIPTION SAMPLE SAMPLE BLOWS/ (blows/ft) (ppm) Surface: Grass NUMBER REC/PEN Drill (min/ft) 6 inches (FT.) 0 - 2 feet: (Topsoil) Brown, fine to coarse SAND and SILT, little Gravel. 2 2 - 6 feet: Light grey, powdery rock 3 riser 4 5 5 6 - 13.5 feet: Brown, fine to coarse SAND, some Silt, 7 8 8 ∇ q 9 10 10 11 11 12 12 well screen 13 13 13.5 - 15 feet: Brown to gray, fine to coarse SAND, some silty Clay. Wet. 14 14 15 15 End boring at 15 ft bgs. Set well at 13.5 ft bgs. 16 Installed two-inch diameter, 0.01-inch slot PVC screen between 8.5 16 and 13.5 ft, and two-inch diameter PVC riser between 0 and 8.5 ft. 17 Filled with cuttings between 0.5 to 7 ft bgs and installed filter sand 17 between 8 to 13.5 ft bgs, and bentonite chips between 7 to 8 ft bgs. 18 Completed well with protective roadbox flush with ground surface 18 set in concrete pad. 19 19 20 **GRANULAR SOILS** COHESIVE SOILS NOTES: LEGEND - Bentonite CONSISTENCY ft. = feet BLOWS/ft. **DENSITY** BLOWS/ft. 0-4 V.LOOSE V.SOFT - Cement LOOSE bgs = below ground surface - Backfill 4-10 2-4 SOFT 10-30 M.DENSE 4-8 M.STIFF - Sand 30-50 DENSE 8-15 STIFF - Well screen - Water Table >50 V DENSE 15-30 V STIFF >30 HARD

StoneHill PROJECT BORING/WELL NO: MW(B)-2R **Environmental North Hampton Municipal Center** Page 1 of 2 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone BORING CO: Geosearch DRILLING METHOD: Air hammer STICKUP HT: flush BORING LOCATION: In driveway; south side of complex. FORFMAN: Christopher Stamas CASING FLEV: 100 45 ft GEOLOGIST: C. Tomforde (NHPG) DATE START: 4/19/21 DATE END: 4/20/21 **GROUND ELEV:** not surveyed GROUNDWATER SAMPLER WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: HEAD-Ē, 4/28/2021 12.17** **BTOC** See note below **FALL** SPACE DEPTH SAMPLE VOTES Casing SCREEN roadbox DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION (ppmv) NUMBER REC/PEN core (min/ft) (FT.) 6 inches Advance boring with 4 1/4- inch ID HSA. 0 - 10 feet: (Cuttings) Gray, fine to coarse SAND, some Gravel, little Silt. 2 4-inch 3 3 diam steel casing to 18 4 4 feet 5 5 6 6 7 7 8 8 9 9 10 10 Resistance at 10 feet, air hammer inside HSA. 10 - 14 feet: Brown, SILT and SAND. Wet. 11 11 12 12 ∇ 13 13 14 14 Refusal on bedrock @ 14' 15 15 16 16 17 17 18 18 19 19 Air hammer 4" diameter "socket" into bedrock to 19 feet bgs. 3-3/4-inch 20 ^{diam} open h<u>ole</u> 20 Install 4-inch diameter steel casing from ground surface to 19 feet bgs and grout in place with Portland cement/bentonite mixture. . bedrock Return on 4/20/21 and roller bit/wash grout from steel casing and well 21 advance boring in bedrock to 30 feet bgs. COHESIVE SOILS LEGEND **GRANULAR SOILS** OWS/ft. DENSITY BLOWS/ft. NSISTENCY - Bentonite * - 4/28/21 - Plug on well casing was suctioned on. - Cement 0-4 V.LOOSE <2 V.SOFT Measured water level likely not stabilized. - Backfill 4-10 LOOSE 2-4 SOFT 10-30 M.DENSE 4-8 M.STIFF - Sand - Well screen 30-50 DENSE 8-15 STIFF >50 V.DENSE 15-30 V.STIFF - Water Table >30 HARD

StoneHill PROJECT BORING/WELL NO: MW(B)-2R **Environmental North Hampton Muncipal Center** Page 2 of 2 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone BORING CO: Geosearch DRILLING METHOD: Air hammer STICKUP HT: flush BORING LOCATION: In driveway; south side of complex. Christopher Stamas CASING ELEV: FOREMAN: 100.45 ft GEOLOGIST: C. Tomforde (NHPG) DATE START: 4/16/21 DATE END: 4/20/21 **GROUND ELEV:** not surveyed SAMPLER GROUNDWATER WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: HEAD-DEPTH (FT.) FALL SPACE SAMPLE Casing NOTES SCREEN DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION (ppmv) NUMBER REC/PEN core (min/ft) (FT.) 6 inches Air hammer boring to 30 feet below ground surface (bgs). 21 21 22 22 23 23 24 24 25 25 26 3-3/4-26 inch diam open hole bedrock 27 27 well 28 28 29 29 30 30 End of open-hole bedrock boring at 30 feet. 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 COHESIVE SOILS NOTES: LEGEND **GRANULAR SOILS** OWS/ft. - Bentonite DENSITY BLOWS/ft. NSISTENCY - Cement 0-4 V.LOOSE <2 V.SOFT LOOSE - Backfill 4-10 2-4 SOFT - Sand 10-30 M.DENSE 4-8 M.STIFF - Well screen 30-50 DENSE 8-15 STIFF - Water Table >50 V.DENSE 15-30 V.STIFF >30 HARD

StoneHill **PROJECT** BORING/WELL NO: MW(B)-3R **Environmental North Hampton Municipal Center** Page 1 of 2 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone BORING CO: Geosearch DRILLING METHOD: Air hammer STICKUP HT: flush BORING LOCATION: In driveway; north side of complex. CASING FLEV: 101.64 ft FORFMAN: Christopher Stamas GEOLOGIST: C. Tomforde (NHPG) DATE START: 4/16/21 DATE END: 4/20/21 **GROUND ELEV:** not surveyed SAMPLER GROUNDWATER WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: HEAD-FT. 4/28/2021 8.95 BTOC (Steel) 1 week **FALL** SPACE DEPTH (SAMPLE NOTES SCREEN Casing roadbox DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION (ppmv) NUMBER REC/PEN core (min/ft) (FT.) 6 inches Advance boring with 4 1/4- inch ID HSA. 0 - 5 feet: (Cuttings) Brown SAND. 4-inch 3 3 diam steel casing to 18 4 4 5 5 6 6 7 Refusal at 7 feet, air hammer inside HSA. 7 7 - 9 feet: Boulder 8 8 9 9 ∇ 9 - 13 feet: Brown SAND and GRAVEL (glacial till). 10 10 11 11 12 12 13 13 Refusal @ 13' on weathered grey schist bedrock 14 14 15 15 16 16 17 17 18 18 Air hammer 4-inch diameter "socket" into bedrock to 18 feet bgs. 19 Install 4-inch diameter steel casing from ground surface to 18 feet bgs 19 and grout in place with Portland cement/bentonite mixture. 3-3/4-inch diam open hole 20 Return on 4/20/21 and air hammer 3.75" diameter boring in bedrock to 28 feet bgs. bedrock well 21 COHESIVE SOILS LEGEND **GRANULAR SOILS** NSISTENCY - Bentonite OWS/ft. DENSITY BLOWS/ft. - Cement 0-4 V.LOOSE <2 V.SOFT - Backfill 4-10 LOOSE 2-4 SOFT 10-30 M.DENSE 4-8 M.STIFF - Sand - Well screen 30-50 DENSE 8-15 STIFF >50 V.DENSE 15-30 V.STIFF - Water Table >30 HARD

St	onel	H	ill				PRC	<u>JECT</u>		вс	RING/\	ΝEL	L NO: N	/IW(B)-3	R
Environmental						Nor	th Hampton	Muncipal	Center	Pag	ge 2	of	2		
							233 Atlar	ntic Avenue		PR	OJECT N	10:	20	21003	
						1	North Hampton	, New Hamps	shire		EPARED KD BY:	BY:		Eyster Stone	
	NG CO:		Geosearc				HOD: Air hamme			STI	CKUP H		1	flush	
	EMAN: LOGIST:		Christophe C. Tomfor			BORING LOCAT DATE START: 4	ΓΙΟΝ: In driveway		omplex. END: 4/20/21		SING ELI OUND E			1.64 ft surveyed	
	S		MPLER	de (NHFG)	DATE START. 4		IDWATER	IND. 4/20/21	GR	CONDE	LEV.		OMPLETIO	N
TYPE					Method Used	DATE	DEPTH	REFERENCE	STABILIZATION TIME		FIELD	_	DI	ETAILS	
FALL	IETER: :		WT:							l	HEAD- SPACE	DEPTH (FT.)			
		. ;	SAMPLE	I	Casing		OAMBI E B	FOODIDTION		LES	SCREEN	Ŧ			
DEPTH (FT.)	SAMPLE NUMBER	Х	SAMPLE REC/PEN	BLOWS/ 6 inches	(blows/ft) core (min/ft)		SAMPLE D	ESCRIPTION		NOTES	(ppmv)	DEF			
21					-	Air hammer bedr	rock boring to 28	feet bgs				21			
21												21			
22												22			
23												23			
24					1							24			
25												25			
26												26	3-3/4- inch diam open hole		
27												27	bedrock well	→	
28					_							28			
						End of open-hole	e bedrock boring	at 28 feet.							
29												29			
30												30			
31					-							31			
32					_							32			
33					-							33			
JJ															
34												34			
35												35			
36												36			
37					_							37			
38												38			
39												39			
40												40			
41					1							41			
(GRANULA	R S	SOILS	COHES	SIVE SOILS	NOTES:				F	LEGENE	<u> </u>	<u> </u>		
OWS/	ft. DE	NS	ITY	BLOWS/ft.	NSISTENCY									Sentonite Comont	
0-4 4-10		.0C	OSE SE	<2 2-4	V.SOFT SOFT									Cement Backfill	
10-30			NSE	4-8	M.STIFF									- Sand	
30-50	D	ENS	SE	8-15	STIFF								- W	ell screen	l
>50	V.I	DEN	NSE	15-30 >30	V.STIFF HARD							∇	- Wa	ter Table	

StoneHill PROJECT BORING/WELL NO: MW(B)-4R Environmental **North Hampton Municipal Center** Page 1 of 2 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone BORING CO: Geosearch DRILLING METHOD: Hollow Stem Auger & Air Hammer STICKUP HT: flush BORING LOCATION: In driveway; southwest side of complex. 100.725 ft FORFMAN: CASING FLEV: Christopher Stamas GEOLOGIST: C. Tomforde (NHPG) DATE START: 4/16/21 DATE END: 4/20/21 **GROUND ELEV:** not surveyed GROUNDWATER SAMPLER WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: HEAD-FT. 4/28/2021 8.44 втос 1 week **FALL** SPACE DEPTH (SAMPLE NOTES SCREEN Casing roadbox DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION (ppmv) NUMBER REC/PEN core (min/ft) (FT.) 6 inches Advance boring with 4 1/4- inch ID HSA. 0 - 14 feet: (Cuttings) Grayish brown, fine to coarse SAND and GRAVEL, some Silt (till). Relatively dense. 2 4-inch 3 3 diam steel casing to 18 4 4 feet 5 5 6 6 7 7 8 8 ∇ 9 9 10 10 11 11 12 12 13 13 14 14 Refusal on grey schist at 14 feet, air hammer inside HSA to 18.5' 15 15 16 16 17 17 18 18 19 19 Install 4-inch diameter steel casing to 18.5 feet bgs 3-3/4-inch diam open hole 20 and grout in place with Portland cement/bentonite mixture. Return on 4/20/21 and air hammer 3.75" diameter bedrock well boring in bedrock to 40 feet bgs. 21 COHESIVE SOILS LEGEND **GRANULAR SOILS** - Bentonite OWS/ft. DENSITY BLOWS/ft. NSISTENCY - Cement 0-4 V.LOOSE <2 V.SOFT - Backfill 4-10 LOOSE 2-4 SOFT 10-30 M.DENSE 4-8 M.STIFF - Sand - Well screen 30-50 DENSE 8-15 STIFF - Water Table >50 V.DENSE 15-30 V.STIFF >30 HARD

StoneHill PROJECT BORING/WELL NO: MW(B)-4R **Environmental North Hampton Muncipal Center** Page 2 of 2 233 Atlantic Avenue PROJECT NO: 2021003 North Hampton, New Hampshire PREPARED BY: M. Eyster CHKD BY: T. Stone **BORING CO:** Geosearch DRILLING METHOD: Air hammer STICKUP HT: flush BORING LOCATION: In driveway; southwest side of complex. CASING ELEV: FOREMAN: 100.725 ft Christopher Stamas GEOLOGIST: C. Tomforde (NHPG) DATE START: 4/16/21 DATE END: 4/20/21 **GROUND ELEV:** not surveyed SAMPLER GROUNDWATER WELL COMPLETION TYPE: Method Used DATE DEPTH REFERENCE STABILIZATION TIME FIELD DETAILS DIAMETER: (FT.) HEAD-FALL SPACE DEPTH (SAMPLE SCREEN Casing DEPTH SAMPLE SAMPLE BLOWS/ (blows/ft) SAMPLE DESCRIPTION (ppmv) NUMBER REC/PEN core (min/ft) (FT.) 6 inches Roller bit/wash bedrock boring to 40 feet below ground surface (bgs). 21 21 22 22 23 23 24 24 25 25 26 3-3/4-26 inch diam open hole bedrock 27 27 well 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 End of open-hole bedrock boring at 40 feet. 41 41 COHESIVE SOILS NOTES: LEGEND **GRANULAR SOILS** OWS/ft. - Bentonite DENSITY BLOWS/ft. NSISTENCY - Cement 0-4 V.LOOSE <2 V.SOFT - Backfill 4-10 LOOSE 2-4 SOFT - Sand 10-30 M.DENSE 4-8 M.STIFF - Well screen 30-50 DENSE 8-15 STIFF - Water Table >50 V.DENSE 15-30 V.STIFF >30 HARD

StoneHill Environmental

APPENDIX B

Laboratory Analytical Reports

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Mark Henderson StoneHill Environmental 600 State St

Suite 2

Portsmouth, NH 03801

PO Number: None

Job ID: 57015

Date Received: 5/17/21

Project: 231 Atlantic Ave. North Hampton, NH 2021003

Attached please find results for the analysis of the samples received on the date referenced above.

Subcontracted analyses are provided under separate cover.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below. The reported results apply to the sample(s) in the condition as received at the time the laboratory took custody. This report shall not be reproduced except in full, without written approval of the laboratory. The liability of ARA is limited to the cost of the requested analyses, unless otherwise agreed upon in writing.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Aaron DeWees

Chief Operating Officer

Date of Approval: 6/4/2021

Total number of pages: 19

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH902

Job ID: 57015

Sample#: 57015-001 Sample ID: MW-2 Matrix: Water

Method Reference: SOP-5317r0							_			
Parameter	Result	Reportin Limit	g DL	Units	Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	ysis Time
						-				
perfluorotetradecanoic acid (PFTEA)	2.1 U	2.1	0.49	ng/L	1	ACA	5/20/21			17:10
perfluorotridecanoic acid (PFTRIA)	2.1 U	2.1	1.1	ng/L	1	ACA	5/20/21			17:10
perfluorododecanoic acid (PFDOA)	2.1 U	2.1	0.38	ng/L	1	ACA	5/20/21			17:10
perfluoroundecanoic acid (PFUNA)	0.26 J	2.1	0.24	ng/L	1	ACA	5/20/21			17:10
perfluorodecanoic acid (PFDA)	1.5 J	2.1	0.72	ng/L	1	ACA	5/20/21			17:10
perfluorononanoic acid (PFNA)	2.7	2.1	0.61	ng/L	1	ACA	5/20/21			17:10
perfluorooctanoic acid (PFOA)	10	2.1	0.17	ng/L	1	ACA	5/20/21			17:10
perfluoroheptanoic acid (PFHPA)	6.2	2.1	0.082	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorohexanoic acid (PFHXA)	19	2.1	0.34	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluoropentanoic acid (PFPA)	16	2.1	1.3	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorobutanoic acid (PFBA)	7.9	2.1	0.17	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorodecane sulfonic acid (PFDS)	2.1 U	2.1	0.15	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorononanesulfonic acid (PFNS)	2.1 U	2.1	0.25	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorooctane sulfonic acid (PFOS)	34	2.1	0.22	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluoroheptane sulfonic acid (PFHPS)	0.59 J	2.1	0.23	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorohexane sulfonic acid (PFHXS)	22	2.1	0.37	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluoropentane sulfonic acid (PFPES)	2.8	2.1	0.12	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorobutane sulfonic acid (PFBS)	9.9	2.1	0.36	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
8:2 fluorotelomer sulfonic acid (82FTS)	2.8	2.1	0.21	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
6:2 fluorotelomer sulfonic acid (62FTS)	0.73 J	2.1	0.31	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
4:2 fluorotelomer sulfonic acid (42FTS)	2.1 U	2.1	0.29	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
perfluorooctane sulfonamide (PFOSA) (FOSA)	2.1 U	2.1	0.16	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
n-methyl perfluorooctane sulfonamide (NMEFOSA)	2.1 U	2.1	0.25	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	2.1 U	2.1	0.69	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	2.1 U	2.1	0.60	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	2.1 U	2.1	0.21	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	2.1 U	2.1	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	2.1 U	2.1	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	2.1 U	2.1	0.15	ng/L	1	ACA	5/20/21	13894	5/20/21	17:10
Surrogate Recovery		Limits								
13C2-PFTeA SUR	83	50-200)	%	1	ACA	5/20/21	13894	5/20/21	17:10

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-001 Sample ID: MW-2 Matrix: Water

Method Reference: SOP-5317r0		Reporting			Dil'n		Prep		Anal	vsis
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time
Surrogate Recovery		Limits								
13C-PFDoA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C7-PFUnA SUR	97	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C6-PFDA SUR	93	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C9-PFNA SUR	93	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C8-PFOA SUR	98	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C4-PFHpA SUR	89	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C5-PFHxA SUR	85	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C5-PFPeA SUR	167	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C-PFBA SUR	100	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C8-PFOS SUR	95	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C3-PFHxS SUR	95	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C3-PFBS SUR	88	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C2-8:2FTSA SUR	144	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C2-6:2FTSA SUR	156	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C2-4:2FTSA SUR	163	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C8-FOSA SUR	60	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
D3-NMeFOSA SUR	20	10-100		%	1	ACA	5/20/21	13894	5/20/21	17:10
D5-NEtFOSAA SUR	115	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
D3-NMeFOSAA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10
13C3-HFPO-DA SUR	66	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:10

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Job ID: 57015

Sample#: 57015-002 Sample ID: MW-2R Matrix: Water

Method Reference: SOP-5317r0		.					_			
Parameter	Result	Reportin Limit	g DL	Unite	Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	lysis Time
						-				
perfluorotetradecanoic acid (PFTEA)	2.3 U	2.3	0.53	ng/L	1	ACA	5/20/21			14:59
perfluorotridecanoic acid (PFTRIA)	2.3 U	2.3	1.2	ng/L	1	ACA	5/20/21			14:59
perfluorododecanoic acid (PFDOA)	2.3 U	2.3	0.41	ng/L	1	ACA	5/20/21			14:59
perfluoroundecanoic acid (PFUNA)	2.3 U	2.3	0.26	ng/L	1	ACA	5/20/21			14:59
perfluorodecanoic acid (PFDA)	2.3 U	2.3	0.77	ng/L	1	ACA	5/20/21			14:59
perfluorononanoic acid (PFNA)	1.1 J	2.3	0.66	ng/L	1	ACA	5/20/21			14:59
perfluorooctanoic acid (PFOA)	4.8	2.3	0.18	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluoroheptanoic acid (PFHPA)	2.5	2.3	0.088	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorohexanoic acid (PFHXA)	5.9	2.3	0.37	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluoropentanoic acid (PFPA)	4.0	2.3	1.4	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorobutanoic acid (PFBA)	3.8	2.3	0.18	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorodecane sulfonic acid (PFDS)	2.3 U	2.3	0.16	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorononanesulfonic acid (PFNS)	2.3 U	2.3	0.27	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorooctane sulfonic acid (PFOS)	20	2.3	0.24	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluoroheptane sulfonic acid (PFHPS)	0.40 J	2.3	0.24	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorohexane sulfonic acid (PFHXS)	16	2.3	0.39	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluoropentane sulfonic acid (PFPES)	1.8 J	2.3	0.13	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorobutane sulfonic acid (PFBS)	5.7	2.3	0.39	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
8:2 fluorotelomer sulfonic acid (82FTS)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
6:2 fluorotelomer sulfonic acid (62FTS)	2.3 U	2.3	0.33	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
4:2 fluorotelomer sulfonic acid (42FTS)	2.3 U	2.3	0.31	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
perfluorooctane sulfonamide (PFOSA) (FOSA)	2.3 U	2.3	0.17	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
n-methyl perfluorooctane sulfonamide (NMEFOSA)	2.3 U	2.3	0.27	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	2.3 U	2.3	0.74	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	2.3 U	2.3	0.65	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	2.3 U	2.3	0.23	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	2.3 U	2.3	0.21	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	2.3 U	2.3	0.16	ng/L	1	ACA	5/20/21	13894	5/21/21	14:59
Surrogate Recovery		Limits								
13C2-PFTeA SUR	115	50-200)	%	1	ACA	5/20/21	13894	5/21/21	14:59

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-002 Sample ID: MW-2R Matrix: Water

Method Reference: SOP-5317r0		Reporting			Dil'n		Prep		Anal	vsis
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time
Surrogate Recovery		Limits								
13C-PFDoA SUR	81	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C7-PFUnA SUR	59	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C6-PFDA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C9-PFNA SUR	103	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C8-PFOA SUR	103	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C4-PFHpA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C5-PFHxA SUR	93	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C5-PFPeA SUR	147	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C-PFBA SUR	103	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C8-PFOS SUR	99	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C3-PFHxS SUR	98	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C3-PFBS SUR	90	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C2-8:2FTSA SUR	235 *	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C2-6:2FTSA SUR	251 *	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C2-4:2FTSA SUR	276 *	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C8-FOSA SUR	57	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
D3-NMeFOSA SUR	22	10-100		%	1	ACA	5/20/21	13894	5/21/21	14:59
D5-NEtFOSAA SUR	148	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
D3-NMeFOSAA SUR	144	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59
13C3-HFPO-DA SUR	71	50-200		%	1	ACA	5/20/21	13894	5/21/21	14:59

^{*} This analogue showed recovery outside of the acceptance criteria. Re-analysis produced similar results.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Job ID: 57015

Sample#: 57015-003 Sample ID: MW-3R Matrix: Water

Sampled: 5/17/21 14:15										
Method Reference: SOP-5317r0		Reportin	•		Dil'n		Prep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	2.4 U	2.4	0.54	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorotridecanoic acid (PFTRIA)	2.4 U	2.4	1.2	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorododecanoic acid (PFDOA)	2.4 U	2.4	0.42	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluoroundecanoic acid (PFUNA)	2.4 U	2.4	0.26	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorodecanoic acid (PFDA)	2.9	2.4	0.79	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorononanoic acid (PFNA)	4.8	2.4	0.67	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorooctanoic acid (PFOA)	14	2.4	0.19	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluoroheptanoic acid (PFHPA)	5.8	2.4	0.090	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorohexanoic acid (PFHXA)	44	2.4	0.38	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluoropentanoic acid (PFPA)	31	2.4	1.5	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorobutanoic acid (PFBA)	9.1	2.4	0.18	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorodecane sulfonic acid (PFDS)	2.4 U	2.4	0.17	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorononanesulfonic acid (PFNS)	2.4 U	2.4	0.27	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorooctane sulfonic acid (PFOS)	86	2.4	0.24	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluoroheptane sulfonic acid (PFHPS)	1.0 J	2.4	0.25	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorohexane sulfonic acid (PFHXS)	32	2.4	0.40	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluoropentane sulfonic acid (PFPES)	2.6	2.4	0.13	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorobutane sulfonic acid (PFBS)	23	2.4	0.40	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
8:2 fluorotelomer sulfonic acid (82FTS)	0.40 J	2.4	0.23	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
6:2 fluorotelomer sulfonic acid (62FTS)	1.7 J	2.4	0.34	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
4:2 fluorotelomer sulfonic acid (42FTS)	2.4 U	2.4	0.32	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
perfluorooctane sulfonamide (PFOSA) (FOSA)	2.2 J	2.4	0.18	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
n-methyl perfluorooctane sulfonamide (NMEFOSA)	2.4 U	2.4	0.27	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	3.8	2.4	0.76	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	2.4 U	2.4	0.66	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	2.4 U	2.4	0.23	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	2.4 U	2.4	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	2.4 U	2.4	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	2.4 U	2.4	0.16	ng/L	1	ACA	5/20/21	13894	5/21/21	15:15
Surrogate Recovery		Limits								
13C2-PFTeA SUR	140	50-200)	%	1	ACA	5/20/21	13894	5/21/21	15:15

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-003 Sample ID: MW-3R Matrix: Water

Sampled: 5/17/21 14:15

Method Reference: SOP-5317r0	Reporting Dil'n				Prep		Analysis			
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time
Surrogate Recovery		Limits								
13C-PFDoA SUR	128	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C7-PFUnA SUR	90	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C6-PFDA SUR	95	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C9-PFNA SUR	91	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C8-PFOA SUR	105	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C4-PFHpA SUR	99	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C5-PFHxA SUR	91	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C5-PFPeA SUR	448 *	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C-PFBA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C8-PFOS SUR	97	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C3-PFHxS SUR	99	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C3-PFBS SUR	88	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C2-8:2FTSA SUR	182	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C2-6:2FTSA SUR	158	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C2-4:2FTSA SUR	198	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C8-FOSA SUR	71	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
D3-NMeFOSA SUR	23	10-100		%	1	ACA	5/20/21	13894	5/21/21	15:15
D5-NEtFOSAA SUR	119	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
D3-NMeFOSAA SUR	148	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15
13C3-HFPO-DA SUR	76	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:15

Note: The response of IS13C4-PFBA was below acceptance criteria. Re-analysis produced similar results. Matrix interference suspected.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

^{*} This analogue showed recovery outside of the acceptance criteria. Re-analysis produced similar results.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Job ID: 57015

Sample#: 57015-004 Sample ID: MW-4R Matrix: Water

Sampled: 5/17/21 14:05										
Method Reference: SOP-5317r0		Reportin	g		Dil'n		Prep		Anal	•
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	2.1 U	2.1	0.48	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorotridecanoic acid (PFTRIA)	2.1 U	2.1	1.1	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorododecanoic acid (PFDOA)	2.1 U	2.1	0.37	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluoroundecanoic acid (PFUNA)	2.1 U	2.1	0.24	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorodecanoic acid (PFDA)	2.1 U	2.1	0.71	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorononanoic acid (PFNA)	1.6 J	2.1	0.60	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorooctanoic acid (PFOA)	13	2.1	0.17	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluoroheptanoic acid (PFHPA)	5.1	2.1	0.080	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorohexanoic acid (PFHXA)	24	2.1	0.34	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluoropentanoic acid (PFPA)	15	2.1	1.3	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorobutanoic acid (PFBA)	6.8	2.1	0.16	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorodecane sulfonic acid (PFDS)	2.1 U	2.1	0.15	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorononanesulfonic acid (PFNS)	2.1 U	2.1	0.24	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorooctane sulfonic acid (PFOS)	180	2.1	0.22	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluoroheptane sulfonic acid (PFHPS)	4.7	2.1	0.22	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorohexane sulfonic acid (PFHXS)	110	2.1	0.36	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluoropentane sulfonic acid (PFPES)	15	2.1	0.12	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorobutane sulfonic acid (PFBS)	34	2.1	0.36	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
8:2 fluorotelomer sulfonic acid (82FTS)	2.1 U	2.1	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
6:2 fluorotelomer sulfonic acid (62FTS)	1.3 J	2.1	0.30	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
4:2 fluorotelomer sulfonic acid (42FTS)	2.1 U	2.1	0.28	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
perfluorooctane sulfonamide (PFOSA) (FOSA)	0.26 J	2.1	0.16	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
n-methyl perfluorooctane sulfonamide (NMEFOSA)	2.1 U	2.1	0.24	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	2.1 U	2.1	0.68	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	2.1 U	2.1	0.59	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	2.1 U	2.1	0.21	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	2.1 U	2.1	0.19	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	2.1 U	2.1	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	2.1 U	2.1	0.14	ng/L	1	ACA	5/20/21	13894	5/20/21	17:58
Surrogate Recovery		Limits								
13C2-PFTeA SUR	87	50-200)	%	1	ACA	5/20/21	13894	5/20/21	17:58

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-004 Sample ID: MW-4R Matrix: Water

Method Reference: SOP-5317r0		Reporting			Dil'n		Prep		Anal	vsis	
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time	
Surrogate Recovery		Limits									
13C-PFDoA SUR	108	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C7-PFUnA SUR	93	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C6-PFDA SUR	90	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C9-PFNA SUR	83	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C8-PFOA SUR	99	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C4-PFHpA SUR	111	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C5-PFHxA SUR	108	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C5-PFPeA SUR	149	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C-PFBA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C8-PFOS SUR	99	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C3-PFHxS SUR	105	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C3-PFBS SUR	101	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C2-8:2FTSA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C2-6:2FTSA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C2-4:2FTSA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C8-FOSA SUR	61	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
D3-NMeFOSA SUR	19	10-100		%	1	ACA	5/20/21	13894	5/20/21	17:58	
D5-NEtFOSAA SUR	92	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
D3-NMeFOSAA SUR	106	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	
13C3-HFPO-DA SUR	100	50-200		%	1	ACA	5/20/21	13894	5/20/21	17:58	

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Job ID: 57015

Sample#: 57015-005 Sample ID: MW-5 Matrix: Water

Sampled: 5/17/21 14:35										
Method Reference: SOP-5317r0		Reportin	g		Dil'n		Prep		Anal	-
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	2.3 U	2.3	0.52	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorotridecanoic acid (PFTRIA)	2.3 U	2.3	1.1	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorododecanoic acid (PFDOA)	2.3 U	2.3	0.40	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluoroundecanoic acid (PFUNA)	2.3 U	2.3	0.25	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorodecanoic acid (PFDA)	2.3 U	2.3	0.75	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorononanoic acid (PFNA)	0.99 J	2.3	0.64	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorooctanoic acid (PFOA)	2.3	2.3	0.18	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluoroheptanoic acid (PFHPA)	0.95 J	2.3	0.086	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorohexanoic acid (PFHXA)	2.2 J	2.3	0.36	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluoropentanoic acid (PFPA)	2.1 J	2.3	1.4	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorobutanoic acid (PFBA)	1.0 J	2.3	0.17	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorodecane sulfonic acid (PFDS)	2.3 U	2.3	0.16	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorononanesulfonic acid (PFNS)	2.3 U	2.3	0.26	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorooctane sulfonic acid (PFOS)	2.5	2.3	0.23	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluoroheptane sulfonic acid (PFHPS)	2.3 U	2.3	0.24	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorohexane sulfonic acid (PFHXS)	2.3	2.3	0.38	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluoropentane sulfonic acid (PFPES)	2.3 U	2.3	0.13	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorobutane sulfonic acid (PFBS)	1.3 J	2.3	0.38	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
8:2 fluorotelomer sulfonic acid (82FTS)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
6:2 fluorotelomer sulfonic acid (62FTS)	2.3 U	2.3	0.32	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
4:2 fluorotelomer sulfonic acid (42FTS)	2.3 U	2.3	0.30	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
perfluorooctane sulfonamide (PFOSA) (FOSA)	2.3 U	2.3	0.17	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
n-methyl perfluorooctane sulfonamide (NMEFOSA)	2.3 U	2.3	0.26	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	2.3 U	2.3	0.72	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	2.3 U	2.3	0.63	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	2.3 U	2.3	0.21	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	2.3 U	2.3	0.21	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	2.3 U	2.3	0.15	ng/L	1	ACA	5/20/21	13894	5/21/21	15:31
Surrogate Recovery		Limits								
13C2-PFTeA SUR	96	50-200)	%	1	ACA	5/20/21	13894	5/21/21	15:31

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-005 Sample ID: MW-5 Matrix: Water

Method Reference: SOP-5317r0		Reporting			Dil'n		Prep		Anal	veie
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time
Surrogate Recovery		Limits								
13C-PFDoA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C7-PFUnA SUR	79	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C6-PFDA SUR	99	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C9-PFNA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C8-PFOA SUR	103	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C4-PFHpA SUR	98	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C5-PFHxA SUR	82	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C5-PFPeA SUR	140	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C-PFBA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C8-PFOS SUR	99	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C3-PFHxS SUR	97	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C3-PFBS SUR	83	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C2-8:2FTSA SUR	107	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C2-6:2FTSA SUR	129	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C2-4:2FTSA SUR	156	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C8-FOSA SUR	55	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
D3-NMeFOSA SUR	12	10-100		%	1	ACA	5/20/21	13894	5/21/21	15:31
D5-NEtFOSAA SUR	98	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
D3-NMeFOSAA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31
13C3-HFPO-DA SUR	81	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:31

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Job ID: 57015

Sample#: 57015-006 Sample ID: MW-6 Matrix: Water

Method Reference: SOP-5317r0		D4!	_		D.III		D		A I	L.=!=
Parameter	Result	Reportin Limit	g DL	Units	Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	ysis Time
perfluorotetradecanoic acid (PFTEA)	2.3 U	2.3	0.52	ng/L	1	ACA	5/20/21			15: 4 7
perfluorotridecanoic acid (PFTRIA)	2.3 U	2.3	1.2	ng/L	1	ACA	5/20/21			15:47
perfluorododecanoic acid (PFDOA)	2.3 U	2.3	0.40	ng/L	1	ACA	5/20/21			15:47
perfluoroundecanoic acid (PFUNA)	2.3 U	2.3	0.26	ng/L	1	ACA	5/20/21			15:47
perfluorodecanoic acid (PFDA)	1.4 J	2.3	0.77	ng/L	1	ACA	5/20/21			15:47
perfluorononanoic acid (PFNA)	2.4	2.3	0.65	ng/L	1	ACA	5/20/21			15:47
perfluorooctanoic acid (PFOA)	5.8	2.3	0.18	ng/L	1	ACA	5/20/21			15:47
perfluoroheptanoic acid (PFHPA)	2.1 J	2.3	0.087	•	1	ACA	5/20/21			15:47
perfluorohexanoic acid (PFHXA)	10.0	2.3	0.36	ng/L	1	ACA	5/20/21			15:47
perfluoropentanoic acid (PFPA)	7.4	2.3	1.4	ng/L	1	ACA	5/20/21			15:47
perfluorobutanoic acid (PFBA)	5.0	2.3	0.18	ng/L	1	ACA	5/20/21			15:47
perfluorodecane sulfonic acid (PFDS)	2.3 U	2.3	0.16	ng/L	1	ACA	5/20/21			15:47
perfluorononanesulfonic acid (PFNS)	2.3 U	2.3	0.26	ng/L	1	ACA	5/20/21			15:47
perfluorooctane sulfonic acid (PFOS)	26	2.3	0.23	ng/L	1	ACA	5/20/21			15:47
perfluoroheptane sulfonic acid (PFHPS)	0.36 J	2.3	0.24	ng/L	1	ACA	5/20/21			15:47
perfluorohexane sulfonic acid (PFHXS)	17	2.3	0.39	ng/L	1	ACA	5/20/21			15:47
perfluoropentane sulfonic acid (PFPES)	1.5 J	2.3	0.13	ng/L	1	ACA	5/20/21			15:47
perfluorobutane sulfonic acid (PFBS)	7.4	2.3	0.39	ng/L	1	ACA	5/20/21			15:47
8:2 fluorotelomer sulfonic acid (82FTS)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21			15:47
6:2 fluorotelomer sulfonic acid (62FTS)	2.3 U	2.3	0.33	ng/L	1	ACA	5/20/21			15:47
4:2 fluorotelomer sulfonic acid (42FTS)	2.3 U	2.3	0.31	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
perfluorooctane sulfonamide (PFOSA) (FOSA)	2.3 U	2.3	0.17	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
n-methyl perfluorooctane sulfonamide (NMEFOSA)	2.3 U	2.3	0.26	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	2.3 U	2.3	0.73	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	2.3 U	2.3	0.64	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	2.3 U	2.3	0.21	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	2.3 U	2.3	0.22	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	2.3 U	2.3	0.16	ng/L	1	ACA	5/20/21	13894	5/21/21	15:47
Surrogate Recovery		Limits								
13C2-PFTeA SUR	93	50-200)	%	1	ACA	5/20/21	13894	5/21/21	15:47

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-006 Sample ID: MW-6 Matrix: Water

Sampled: 5/17/21 14:25

Method Reference: SOP-5317r0	i	Reporting			Dil'n		Prep		Anal	vsis
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time
Surrogate Recovery		Limits								
13C-PFDoA SUR	92	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C7-PFUnA SUR	80	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C6-PFDA SUR	89	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C9-PFNA SUR	79	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C8-PFOA SUR	98	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C4-PFHpA SUR	100	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C5-PFHxA SUR	96	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C5-PFPeA SUR	260 *	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C-PFBA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C8-PFOS SUR	99	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C3-PFHxS SUR	102	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C3-PFBS SUR	93	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C2-8:2FTSA SUR	129	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C2-6:2FTSA SUR	117	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C2-4:2FTSA SUR	143	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C8-FOSA SUR	55	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
D3-NMeFOSA SUR	16	10-100		%	1	ACA	5/20/21	13894	5/21/21	15:47
D5-NEtFOSAA SUR	86	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
D3-NMeFOSAA SUR	103	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47
13C3-HFPO-DA SUR	80	50-200		%	1	ACA	5/20/21	13894	5/21/21	15:47

Note: The response of IS13C4-PFBA was below acceptance criteria. Re-analysis produced similar results. Matrix interference suspected.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

^{*} This analogue showed recovery outside of the acceptance criteria. Re-analysis produced similar results.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Job ID: 57015

Sample#: 57015-007 Sample ID: Field Blank Matrix: Water

Sampled: 5/17/21 14:45										
Method Reference: SOP-5317r0		Reporting	9		Dil'n		Prep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	1.8 U	1.8	0.41	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorotridecanoic acid (PFTRIA)	1.8 U	1.8	0.90	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorododecanoic acid (PFDOA)	1.8 U	1.8	0.31	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluoroundecanoic acid (PFUNA)	1.8 U	1.8	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorodecanoic acid (PFDA)	1.8 U	1.8	0.59	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorononanoic acid (PFNA)	1.8 U	1.8	0.51	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorooctanoic acid (PFOA)	1.8 U	1.8	0.14	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluoroheptanoic acid (PFHPA)	1.8 U	1.8	0.068	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorohexanoic acid (PFHXA)	1.8 U	1.8	0.28	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluoropentanoic acid (PFPA)	1.8 U	1.8	1.1	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorobutanoic acid (PFBA)	1.8 U	1.8	0.14	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorodecane sulfonic acid (PFDS)	1.8 U	1.8	0.12	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorononanesulfonic acid (PFNS)	1.8 U	1.8	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorooctane sulfonic acid (PFOS)	1.8 U	1.8	0.18	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluoroheptane sulfonic acid (PFHPS)	1.8 U	1.8	0.19	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorohexane sulfonic acid (PFHXS)	1.8 U	1.8	0.30	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluoropentane sulfonic acid (PFPES)	1.8 U	1.8	0.099	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorobutane sulfonic acid (PFBS)	1.8 U	1.8	0.30	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
8:2 fluorotelomer sulfonic acid (82FTS)	1.8 U	1.8	0.17	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
6:2 fluorotelomer sulfonic acid (62FTS)	1.8 U	1.8	0.25	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
4:2 fluorotelomer sulfonic acid (42FTS)	1.8 U	1.8	0.24	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
perfluorooctane sulfonamide (PFOSA) (FOSA)	1.8 U	1.8	0.13	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
n-methyl perfluorooctane sulfonamide (NMEFOSA)	1.8 U	1.8	0.20	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	1.8 U	1.8	0.57	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	1.8 U	1.8	0.50	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	1.8 U	1.8	0.17	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	1.8 U	1.8	0.16	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	1.8 U	1.8	0.17	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	1.8 U	1.8	0.12	ng/L	1	ACA	5/20/21	13894	5/20/21	16:06
Surrogate Recovery		Limits								
13C2-PFTeA SUR	90	50-200	ı	%	1	ACA	5/20/21	13894	5/20/21	16:06

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

Job ID: 57015

Sample#: 57015-007 Sample ID: Field Blank Matrix: Water

Method Reference: SOP-5317r0		Reporting			Dil'n		Prep		Anal	vsis
Parameter	Result	Limit	DL	Units		Analyst	Date	Batch		Time
Surrogate Recovery		Limits								
13C-PFDoA SUR	86	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C7-PFUnA SUR	74	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C6-PFDA SUR	89	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C9-PFNA SUR	88	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C8-PFOA SUR	102	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C4-PFHpA SUR	91	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C5-PFHxA SUR	90	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C5-PFPeA SUR	104	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C-PFBA SUR	100	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C8-PFOS SUR	98	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C3-PFHxS SUR	100	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C3-PFBS SUR	90	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C2-8:2FTSA SUR	88	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C2-6:2FTSA SUR	97	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C2-4:2FTSA SUR	82	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C8-FOSA SUR	59	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
D3-NMeFOSA SUR	14	10-100		%	1	ACA	5/20/21	13894	5/20/21	16:06
D5-NEtFOSAA SUR	83	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
D3-NMeFOSAA SUR	156	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06
13C3-HFPO-DA SUR	85	50-200		%	1	ACA	5/20/21	13894	5/20/21	16:06

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

U = This compound was analyzed for, but not detected above the associated method detection limit.

Isotope Dilution

SOP-5317r0 is an isotope dilution method. As such, isotopically labelled analogues and performance standards are used to account for variability that may arise from the extraction process or analytical instrumentation. Compounds labelled as "SUR" are utilized as extracted internal standards, meaning that they are subject to all steps of the extraction process. Compounds labelled as "IS" are used as performance standards and are added to samples following extraction. Isotope dilution analogue concentrations are calculated based upon the response of internal standards. In turn, the concentration of a target analyte is calculated in relation to the recovery of its associated analogue.

Direct analogues are used whenever possible, as they will behave identically to their analogous target analyte during the extraction process. However, not all the reported analytes have direct analogues commercially available. In instances where no direct analogue is available, an analogue with similar structure and chemistry to the target analyte is employed.

Refer to the included "Isotope Dilution Association Table" for the specific analogue (SS) and performance standard (IS) associated with each target compound.

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Isotope Dilution Association Table

		Performance
Analyte	Analogue (SS)	Standard (IS)
PFTEA	13C2-PFTeA SUR	13C2-PFOA IS
PFTRIA	13C2-PFTeA SUR	13C2-PFOA IS
PFDOA	13C-PFDoA SUR	13C2-PFOA IS
PFUNA	13C7-PFUnA SUR	13C2-PFOA IS
PFDA	13C6-PFDA SUR	13C2-PFOA IS
PFNA	13C9-PFNA SUR	13C2-PFOA IS
PFOA	13C8-PFOA SUR	13C2-PFOA IS
PFHPA	13C4-PFHpA SUR	13C2-PFOA IS
PFHXA	13C5-PFHxA SUR	13C2-PFOA IS
PFPA	13C5-PFPeA SUR	13C3-PFBA IS
PFBA	13C-PFBA SUR	13C3-PFBA IS
PFDS	13C8-PFOS SUR	13C4-PFOS IS
PFNS	13C8-PFOS SUR	13C4-PFOS IS
PFOS	13C8-PFOS SUR	13C4-PFOS IS
PFHPS	13C8-PFOS SUR	13C4-PFOS IS
PFHXS	13C3-PFHxS SUR	13C4-PFOS IS
PFPES	13C3-PFHxS SUR	13C4-PFOS IS
PFBS	13C3-PFBS SUR	13C4-PFOS IS
82FTS	13C2-8:2FTSA SUR	13C4-PFOS IS
62FTS	13C2-6:2FTSA SUR	13C4-PFOS IS
42FTS	13C2-4:2FTSA SUR	13C4-PFOS IS
FOSA	13C8-FOSA SUR	13C4-PFOS IS
NMEFOSA	D3-NMeFOSA SUR	13C4-PFOS IS
NETFOSAA	D5-NEtFOSAA SUR	13C2-PFOA IS
NMEFOSAA	D3-NMeFOSAA SUR	13C2-PFOA IS
HFPODA	13C3-HFPO-DA SUR	13C2-PFOA IS
ADONA	13C4-PFHpA SUR	13C2-PFOA IS
11CLPF3OUDS	13C8-PFOS SUR	13C4-PFOS IS
9CLPF3ONS	13C8-PFOS SUR	13C4-PFOS IS

124 Heritage Avenue Unit 16 Portsmouth, NH 03801

www.absoluteresourceassociates.com

				. 1	1/_																										P	AGE_	_)	OF I	=
Abso	olute F	Resou	rce			<i>P</i>			1		smo	age Aven outh, NH -436-200	03801						F-CI LYS						OR	D			5	70)1	.5	o1 G		
	as.	sociai	t e s		כליו								ciates.cor									AN	AL	YS.	IS	RE	QL	JES	ST.						
Company Nai Company Adi COO Sto Report To: MOX K	te St. Si	lite 2.				H	, NH	Pr Pr	oject 207 oject	#: Loca	No tion:	OI At 10 OF THE MAN		tve.	ADEP	21/17			erprint	99			☐ Apparent Color	idity	☐ TAL Metals ☐ Hardness				0 0	Ortho P D Phenols		CTCLP SVOC CTCLP Pesticide	stos		
DI "				-					otoco	31.	RCR MCP			S	☐ VOC 8260 MADEP	☐ VOC BTEX MtBE, only ☐ VOC 8021VT	92	☐ Gases-List:	TPH Fingerprint	□ 608.3 Pest/PCB			100	☐ Acidity	IAI 🗆				☐ Bacteria MPN			5	☐ Asbestos		1
Invoice to:	<u>3-812-</u>	7071	_	_				Re	eporti	ng	QAP	P W	1 S-1		VOC 8	Ó	☐ 1,4-Dioxane	□ Gas		08.3			□ Turbidity	☐ Alkalinity	letals			NOTO	Sacteri	+ Nitrite C	1	SVOC	1000000		1
Invoice to:	Daley	1.MOULT	10	Clo	l-il	VC.	. COr	ηLi	mits:		EPA	DW Othe	r	-		E, only			EPH MADEP			664	Ę	D Ak	rtant M			-				TCLF	☐ Herbicides		1
Email:								_ Qi	uote #	<u> </u>					8260 NHDES	EX Mt	015 (4.2 NH	EPH			0&G 1	ctivity	SVL	ty Pollt			O TKN	eria P/	□ Nitrate + Nitrite	hv/FP				3
PO #:								_ 0	NH F	eimb	urser	ment Pricin	9		C 826	OC BT	CI GRO 8015	0C 524	10 8015 DE	1 8081 Pesticides		☐ Mineral 0&G 1664	□ Conductivity	D TS D	☐ Priority Pollutant Metals		·list:	0	\simeq	. 0	1 72	TCLP VOC	Grain Size		Composite (C)
Lab			IERS	N	/latri	x	Pre	serva	ation	Meth	od	Sa	ampling		0 VOC	3337	0	0	DR0 8015		_		0			s-list:	Metals			□ Sulfide		S			
Sample ID (Lab Use Only)		eld D	# CONTAINERS	WATER	SOLID	OTHER	HCI	HNOs	H ₂ SO₄	NaOH	МеОН	DATE	TIME	SAMPLER	□ V0C 8260	□ V0C 624.1	CI VPH MADEP	☐ VOC 524.2 ☐ VOC 524.2 NH List	O TPH O D	U 82/UPAH	4-PFAS 537.1	0&G 1664	DPH DBOD	OTSS OTDS	☐ RCRA Metals	☐ Total Metals-list:	☐ Dissolved Metals-list:	☐ Ammonia		Cyanide C		TCLP Metals	Subcontract:		Grab (G) or
57015-4	MW-	2	2	1								5-17-21	1345	ME							X													(G
-02	MWG	2R	2	X								5-17.51	1355	W£							X														S
-03	WM-	3R	2	X			18					5-17-21									X														5
704	WM-		2	X	40000	0.100		130,100	80000	0-900	15.000		1405						E-0109 B		X			1000	1000	100			-	363 07	200				3
75	WM-		2	X		-								WE				936			X	-		10.00							5000				0000
-06	Filld		2	\ \ \ \	1 - 30		15.9						1425	ME	100		0000	00			X	155					1760	188			es la	1 2	194		3
-18		5),8-9, 14S			X						1,019	4-20-2		me							X		-10	ince	1	or	1,15	one		ed 5	1/8	121			3
704		drain	1		×							5-17-2	0925	ME							X			loc					ď	10 3				6	3
TAT REQ		See absolut						SP	ECIA	L IN	STF	UCTION	S																						
Expedited (4		currer					and																٠						-						
Standard (10 Busines		REPORT	ING	INST	RUC	стю	NS	义	PDF	(e-ma	ail ad	dress)M(urk.He	ndı	ers	sor	<u> 10</u>	Sti	mu	\ill	en	Viv	OV	m	en	ta	.cc			EIVE			No.	ES ON	
*Date Neede	ed	□ HARD C			-	D	O E	DD_							_			-						_			10		ГЕМ	IPER/	_	-	_	_	,C
CUST		Remouish	ed by	Sam	pler:	1	4					5-17	-2 \	Tin 17:		-	Hece	eive	d by:			-	_		_			13	_	+	Da	ate	+	Time	-
Secretary States		Relinquish	ed by		7	10	~	2			_		ate	Tin	-	1	Rece	eive	d by:								9.	16.6		+	Da	ate	1	Time	T
REC QSD-01 Revision	ORD on 03/09/2020	Relinquish	ed by	·:			_	_	_			D	ate	Tin	ne	-	Rec	eive	d by	Labo	rator	y	1	71	111	10/	,	d		+	, Da	ate .	土	Time	=
		-	_	_	-	-			_	_	_	-		-		-						X	N	11	W	40				15	11	7/21		(7130	,

Sample Receipt Condition Report Job Number: Absolute Resource Associates □-UPS □-FedEx □-Lab Courier -Client Drop-off Samples Received from: □-USPS Custody Seals - present & intact: □-Yes □-No A-N/A Yes D-No CoC signed: Samples on ice? Yes U-No U-N/A Sampled < 24 hrs ago? □-Yes ►No Receipt Temp: PFAS-only real ice? ✓ Yes □-No □-N/A Any signs of freezing? -Yes No Comments: Bottle Size/Type & Quantity Check pH for ALL applicable* Preservation samples and document: / Analysis 250mL(P) 500mL(P) 1L(G) **HCl** 40mL(G) HNO₃ 125mL(P) 250mL(P) 500mL(P) H2SO4 40mL(G) 60mL(P) 125mL(P) 250mL(P) 500mL(P) 125mL(P) 250mL(P) NaOH 60mL(P) (NH₄)₂SO₄ 125mL(P) 250mL(P) ZnAc-NaOH 125mL(P) 250mL(P) *pH ✓ by analyst: VOC, PFAS, TOC,O&G 125mL(P) 250mL (P) Trizma Residual Cl not present: NH₄Ac 125mL(P) 250mL (P) ABN625 Pest608 120mL(P) NaS2O3 40mL(G) Bacteria ResCl ✓ by analyst MeOH 20mL(G) 40mL(G) ZSOP PC Dry applicable? Y None (solid) 2oz(G) 4oz(G) 8oz(G) Syringe 125mL(P) 250mL(P) 500mL(P) 1L(G) 1L (P) None (water) 40ml (G) 60mL(P) Bulk Plate Mold-Cassette Tape Lift Asbestos Cassette Bulk Lead Cassette Bulk Wipe Login Review No N/A Comments Proper lab sample containers/enough volume/correct preservative? Analyses marked on COC match bottles received? VOC &TOC Water-no headspace? VOC Solid-MeOH covers solid, no leaks, Prep Expiration OK? PFAS: Lab specific bottles? QC received, if required? Bacteria bottles provided by ARA? Samples within holding time? Immediate tests communicated in writing: NO3, NO2,0-PO4, pH, BOD, Coliform/E. coli (P/A or MPN), Enterococci, Color Surfactants, Turbidity, Odor, CrVI, Ferrous Iron, Dissolved Oxygen, Unpres 624 Date, time & ID on samples match CoC? Rushes communicated to analyst in writing? Subcontract note on login board? Pesticides EPA 608 pH5-9? Compliance samples have no discrepancies/require no flags? (Or must be rejected) Discrepancies, compliance samples (NHDES, MADEP, DoD etc.) or uncommon requests. Log-in Supervisor notified immediately of following items: DoD etc.) or uncommon requests. Date/Time: Inspected and Received By: Peer Review Checklist Sample IDs On Ice, Temperature OK? ☑ Client ID/Project Manager Analyses in Correctly DO# (if provided) Matrix -references Project Name Sub samples sent? Shipping Charge? Date/Time collected -wastewater methods TAT/rushes communicated Notes from CoC in LIMS Short HTs communicated Received Date/Time ☐ Issues noted above communicated?

QSD-04 Rev8 01/06/21 JVG (Page 1 of 1)

What was sent?

Report / Data / EDD / Invoice

Report / Data / EDD / Invoice Report / Data / EDD / Invoice

Date: 5-21-21

Uploaded / PDF

Uploaded / PDF

Uploaded / PDF

Initials

Date

Reviewed By:

Notes: (continue on back as needed)

Catch Basin CB-1 Sediment Sample

Your P.O. #: 57015 Your Project #: 57015 Your C.O.C. #: na

Attention: Aaron DeWees

Absolute Resource Associates LLC 124 Heritage Avenue Unit # 16 Portsmouth, NH USA 03801

Report Date: 2021/06/04

Report #: R6661597 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1D5176 Received: 2021/05/19, 12:38

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Moisture	1	N/A	2021/05/20	CAM SOP-00445	Carter 2nd ed 51.2 m
PFAS in soil by SPE/LCMS (1)	1	2021/05/27	2021/06/02	CAM SOP-00894	ASTM D7968-17a m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- ${\sf B} = {\sf Blank} \ {\sf Contamination}.$
- Q = One or more quality control criteria failed.
- $\label{eq:energy} {\sf E} = {\sf Analyte} \ {\sf concentration} \ {\sf exceeds} \ {\sf the} \ {\sf maximum} \ {\sf concentration} \ {\sf level}.$
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: 57015 Your Project #: 57015 Your C.O.C. #: na

Attention: Aaron DeWees

Absolute Resource Associates LLC 124 Heritage Avenue Unit # 16 Portsmouth, NH 03801 USA

Report Date: 2021/06/04

Report #: R6661597

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1D5176 Received: 2021/05/19, 12:38

Encryption Key

Lori Dufour Project Manager 04 Jun 2021 11:28:13

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Lori Dufour, Project Manager

Email: Lori.Dufour@bureauveritas.com

Phone# (905) 817-5700

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

BV Labs ID		PPM141			
Sampling Date		2021/05/17 09:25			
COC Number		na			
	UNITS	SEWER DRAIN	RDL	MDL	QC Batch
Inorganics					
Inorganics Moisture	%	14	1.0	0.50	7364139
		14	1.0	0.50	7364139

PERFLUOROALKYL SUBSTANCES (SOIL)

BV Labs ID		PPM141			
Sampling Date		2021/05/17 09:25			
COC Number		na			
	UNITS	SEWER DRAIN	RDL	MDL	QC Batch
Perfluorinated Compounds					
Perfluorobutanoic acid (PFBA)	ug/kg	0.38 J	1.0	0.24	7379547
Perfluoropentanoic acid (PFPeA)	ug/kg	0.45 J	1.0	0.23	7379547
Perfluorohexanoic acid (PFHxA)	ug/kg	0.16 U	1.0	0.16	7379547
Perfluoroheptanoic acid (PFHpA)	ug/kg	0.17 U	1.0	0.17	7379547
Perfluorooctanoic acid (PFOA)	ug/kg	0.20 U	1.0	0.20	7379547
Perfluorononanoic acid (PFNA)	ug/kg	0.27 U	1.0	0.27	7379547
Perfluorodecanoic acid (PFDA)	ug/kg	0.24 U	1.0	0.24	7379547
Perfluoroundecanoic acid (PFUnA)	ug/kg	0.25 U	1.0	0.25	7379547
Perfluorododecanoic acid (PFDoA)	ug/kg	0.19 U	1.0	0.19	7379547
Perfluorotridecanoic acid (PFTRDA)	ug/kg	0.22 U	1.0	0.22	7379547
Perfluorotetradecanoic acid(PFTEDA)	ug/kg	0.30 U	1.0	0.30	7379547
Perfluorobutanesulfonic acid (PFBS)	ug/kg	0.17 U	1.0	0.17	7379547
Perfluoropentanesulfonic acid PFPes	ug/kg	0.26 U	1.0	0.26	7379547
Perfluorohexanesulfonic acid(PFHxS)	ug/kg	0.30 U	1.0	0.30	7379547
Perfluoroheptanesulfonic acid PFHpS	ug/kg	0.17 U	1.0	0.17	7379547
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.27 U	1.0	0.27	7379547
Perfluorononanesulfonic acid (PFNS)	ug/kg	0.24 U	1.0	0.24	7379547
Perfluorodecanesulfonic acid (PFDS)	ug/kg	0.27 U	1.0	0.27	7379547
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.20 U	1.0	0.20	7379547
Surrogate Recovery (%)					
13C2-Perfluorodecanoic acid	%	96	N/A	N/A	7379547
13C2-Perfluorododecanoic acid	%	92	N/A	N/A	7379547
13C2-Perfluorohexanoic acid	%	97	N/A	N/A	7379547
13C2-perfluorotetradecanoic acid	%	91	N/A	N/A	7379547
13C2-Perfluoroundecanoic acid	%	98	N/A	N/A	7379547
13C3-Perfluorobutanesulfonic acid	%	95	N/A	N/A	7379547
13C4-Perfluorobutanoic acid	%	91	N/A	N/A	7379547
13C4-Perfluoroheptanoic acid	%	95	N/A		7379547
13C4-Perfluorooctanesulfonic acid	%	94	N/A	N/A	7379547
13C4-Perfluorooctanoic acid	%	94	N/A	N/A	7379547
13C5-Perfluorononanoic acid	%	96	N/A	N/A	7379547
13C5-Perfluoropentanoic acid	%	91	N/A	N/A	7379547
13C8-Perfluorooctane Sulfonamide	%	89	N/A	N/A	7379547
1802-Perfluorohexanesulfonic acid	%	90	N/A	N/A	7379547
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable					

Absolute Resource Associates LLC Report Date: 2021/06/04 Client Project #: 57015 Your P.O. #: 57015

TEST SUMMARY

BV Labs ID: PPM141 Sample ID: SEWER DRAIN **Collected:** 2021/05/17

Matrix: Soil

Shipped:

Received: 2021/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7364139	N/A	2021/05/20	Gurpreet Kaur (ONT)
PFAS in soil by SPE/LCMS	LCMS	7379547	2021/05/27	2021/06/02	Lovelpreet Thind

GENERAL COMMENTS

Results	relate on	ly to the	items tes	ted
IVC3UIL3	relate on	1 7 LO LITE	iteilis tes	icu.

Report Date: 2021/06/04

Absolute Resource Associates LLC Client Project #: 57015 Your P.O. #: 57015

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
7364139	MYG	RPD - Sample/Sample Dup	Moisture	2021/05/20	4.0		%	20
7379547	LOV	Matrix Spike	13C2-Perfluorodecanoic acid	2021/06/02		63	%	50 - 150
			13C2-Perfluorododecanoic acid	2021/06/02		73	%	50 - 150
			13C2-Perfluorohexanoic acid	2021/06/02		91	%	50 - 150
			13C2-perfluorotetradecanoic acid	2021/06/02		61	%	50 - 150
			13C2-Perfluoroundecanoic acid	2021/06/02		73	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2021/06/02		92	%	50 - 150
			13C4-Perfluorobutanoic acid	2021/06/02		92	%	50 - 150
			13C4-Perfluoroheptanoic acid	2021/06/02		87	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2021/06/02		83	%	50 - 150
			13C4-Perfluorooctanoic acid	2021/06/02		82	%	50 - 150
			13C5-Perfluorononanoic acid	2021/06/02		70	%	50 - 150
			13C5-Perfluoropentanoic acid	2021/06/02		87	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2021/06/02		73	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2021/06/02		88	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2021/06/02		79	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2021/06/02		79	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2021/06/02		80	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2021/06/02		80	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2021/06/02		78	%	70 - 130
			Perfluorononanoic acid (PFNA)	2021/06/02		87	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2021/06/02		83	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2021/06/02		79	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2021/06/02		80	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2021/06/02		92	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2021/06/02		81	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2021/06/02		77	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2021/06/02		84	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2021/06/02		79	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2021/06/02		79	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2021/06/02		81	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2021/06/02		92	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2021/06/02		94	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2021/06/02		79	%	70 - 130
7379547	LOV	Spiked Blank	13C2-Perfluorodecanoic acid	2021/06/02		99	%	50 - 150
, , , , , , , , , , , , , , , , , , , ,		opinioa Diann	13C2-Perfluorododecanoic acid	2021/06/02		90	%	50 - 150
			13C2-Perfluorohexanoic acid	2021/06/02		98	%	50 - 150
			13C2-perfluorotetradecanoic acid	2021/06/02		84	%	50 - 150
			13C2-Perfluoroundecanoic acid	2021/06/02		96	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2021/06/02		98	%	50 - 150
			13C4-Perfluorobutanoic acid	2021/06/02		96	%	50 - 150
			13C4-Perfluoroheptanoic acid	2021/06/02		98	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2021/06/02		99	%	50 - 150
			13C4-Perfluorooctanoic acid	2021/06/02		98	%	50 - 150
			13C5-Perfluorononanoic acid	2021/06/02		100	%	50 - 150
			13C5-Perfluoropentanoic acid	2021/06/02		95	% %	50 - 150
			13C8-Perfluoropentanoic acid 13C8-Perfluorooctane Sulfonamide	2021/06/02		95 96	% %	50 - 150 50 - 150
			1802-Perfluorobexanesulfonic acid	2021/06/02		96 96	% %	50 - 150
			Perfluorobutanoic acid (PFBA)	2021/06/02		96 79		70 - 130
							% %	
			Perfluoropentanoic acid (PFPeA)	2021/06/02		78 91	%	70 - 130
			Perfluerabentancia acid (PFHxA)	2021/06/02		81	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2021/06/02		80	%	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorooctanoic acid (PFOA)	2021/06/02		79	%	70 - 130
			Perfluorononanoic acid (PFNA)	2021/06/02		87	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2021/06/02		80	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2021/06/02		82	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2021/06/02		81	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2021/06/02		87	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2021/06/02		80	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2021/06/02		78	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2021/06/02		83	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2021/06/02		81	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2021/06/02		79	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2021/06/02		81	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2021/06/02		80	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2021/06/02		75	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2021/06/02		79	%	70 - 130
7379547	LOV	Method Blank	13C2-Perfluorodecanoic acid	2021/06/02		101	%	50 - 150
			13C2-Perfluorododecanoic acid	2021/06/02		96	%	50 - 150
			13C2-Perfluorohexanoic acid	2021/06/02		102	%	50 - 150
			13C2-perfluorotetradecanoic acid	2021/06/02		93	%	50 - 150
			13C2-Perfluoroundecanoic acid	2021/06/02		98	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2021/06/02		101	%	50 - 150
			13C4-Perfluorobutanoic acid	2021/06/02		97	%	50 - 150
			13C4-Perfluoroheptanoic acid	2021/06/02		101	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2021/06/02		98	%	50 - 150
			13C4-Perfluorooctanoic acid	2021/06/02		99	%	50 - 150
			13C5-Perfluorononanoic acid	2021/06/02		100	%	50 - 150
			13C5-Perfluoropentanoic acid	2021/06/02		97	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2021/06/02		95	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2021/06/02		97	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2021/06/02	0.24 U,	<i>57</i>	ug/kg	55 255
					MDL=0.24			
			Perfluoropentanoic acid (PFPeA)	2021/06/02	0.23 U, MDL=0.23		ug/kg	
			Perfluorohexanoic acid (PFHxA)	2021/06/02	0.16 U, MDL=0.16		ug/kg	
			Perfluoroheptanoic acid (PFHpA)	2021/06/02	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctanoic acid (PFOA)	2021/06/02	0.20 U, MDL=0.20		ug/kg	
			Perfluorononanoic acid (PFNA)	2021/06/02	0.27 U, MDL=0.27		ug/kg	
			Perfluorodecanoic acid (PFDA)	2021/06/02	0.24 U, MDL=0.24		ug/kg	
			Perfluoroundecanoic acid (PFUnA)	2021/06/02	0.25 U, MDL=0.25		ug/kg	
			Perfluorododecanoic acid (PFDoA)	2021/06/02	0.19 U, MDL=0.19		ug/kg	
			Perfluorotridecanoic acid (PFTRDA)	2021/06/02	0.22 U, MDL=0.22		ug/kg	
			Perfluorotetradecanoic acid(PFTEDA)	2021/06/02	0.30 U, MDL=0.30		ug/kg	
			Perfluorobutanesulfonic acid (PFBS)	2021/06/02	0.17 U, MDL=0.17		ug/kg	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluoropentanesulfonic acid PFPes	2021/06/02	0.26 U, MDL=0.26		ug/kg	
			Perfluorohexanesulfonic acid(PFHxS)	2021/06/02	0.30 U, MDL=0.30		ug/kg	
			Perfluoroheptanesulfonic acid PFHpS	2021/06/02	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctanesulfonic acid (PFOS)	2021/06/02	0.27 U, MDL=0.27		ug/kg	
			Perfluorononanesulfonic acid (PFNS)	2021/06/02	0.24 U, MDL=0.24		ug/kg	
			Perfluorodecanesulfonic acid (PFDS)	2021/06/02	0.27 U, MDL=0.27		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2021/06/02	0.20 U, MDL=0.20		ug/kg	
7379547	LOV	RPD - Sample/Sample Dup	Perfluorobutanoic acid (PFBA)	2021/06/02	NC		%	30
			Perfluoropentanoic acid (PFPeA)	2021/06/02	NC		%	30
			Perfluorohexanoic acid (PFHxA)	2021/06/02	NC		%	30
			Perfluoroheptanoic acid (PFHpA)	2021/06/02	NC		%	30
			Perfluorooctanoic acid (PFOA)	2021/06/02	NC		%	30
			Perfluorononanoic acid (PFNA)	2021/06/02	NC		%	30
			Perfluorodecanoic acid (PFDA)	2021/06/02	NC		%	30
			Perfluoroundecanoic acid (PFUnA)	2021/06/02	NC		%	30
			Perfluorododecanoic acid (PFDoA)	2021/06/02	NC		%	30
			Perfluorotridecanoic acid (PFTRDA)	2021/06/02	NC		%	30
			Perfluorotetradecanoic acid(PFTEDA)	2021/06/02	NC		%	30
			Perfluorobutanesulfonic acid (PFBS)	2021/06/02	NC		%	30
			Perfluoropentanesulfonic acid PFPes	2021/06/02	NC		%	30
			Perfluorohexanesulfonic acid(PFHxS)	2021/06/02	NC		%	30
			Perfluoroheptanesulfonic acid PFHpS	2021/06/02	NC		%	30
			Perfluorooctanesulfonic acid (PFOS)	2021/06/02	NC		%	30
			Perfluorononanesulfonic acid (PFNS)	2021/06/02	NC		%	30
			Perfluorodecanesulfonic acid (PFDS)	2021/06/02	NC		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2021/06/02	NC		%	30

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Colm McNamara, Senior Analyst, Liquid Chromatography

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	ATA										
	Resource S	UBCONT	RACT CI	IAIN OF	CUSTOD	Y DOCUME	NTATION		,		
Client	Absolute Resource Associates		Contact: Aaron DeWees Phone: 603 436 2001 Fax Page of								
Report to: .	Aaron DeWees/Charles Leahy		Address 124 Heritage Ave. #16 Project Name/Number 57015			015					
invoice to:	cathyd@absoluteresourceasso	ociates.com	Portsmouth, NH 03801 Project State: NH MA ME V1		MA ME VT						
PO# 570/5 Quote#:							Protocol RCRA SDWA		HDES Other		
lab Number Jassigned by Jaboratory)	Field ID: (must agree with container)	Date Sampled	Time Sampled	Sampled By	Container Size (mL)	Container Type (P/G/1)	Field Preservation	Matrix SiSoil WeWater			
	13(MWS), 8-9'b9 5	, 4/20/21	8:30		250	P	none	7	PFAS		
	Sapr Drain	SIMMI	9:25		1 -	1	1	1	1		
	Suo Dimi	- 11/10/	1	1							4
		-	1								
		1	<u> </u>								
	19-May-21 12:3 Lori Dufour	ľ						Contro	Sample Heat Treat Required High Risk material olled Storage and Disposal		
Subcontract Lab	oratory BV Labs			2 -							
Relinquished by	1 ans	Date Ale	.Time	14:16	Received by	Parent Par	eep Munul	\	Date 2011 15/19 Time 12:38		
Relinquished by		Date	Time	5.00	Received by				Date: Time		
Relinguished by	/	Date	Time	1 . 1	Received by:				Date: Time		
				1.10 8		The second second	and Ownerston and Control		Received on ice?		
Reporting ins	structions: <u>PDF</u> (Email Address	aarond@abso	luteresource	isseciates con	n; ckarlesi@ab	soluteresourceas	sociates.com j		Y N		
	Excel File: Y / N			f . "					3.8 3.7 4.8		
TAT Requested	Priority (24hr) Expedited*(48hr)	=10.8 _{iss} ir	ess days	Date needed					1		
Comments				8		. '					/
connection.				4						/	
								Q	SD-21 12/10/19 Rev2 ajd (pg 1/1)	//	
				Es.	,				7.5		

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Mark Henderson
StoneHill Environmental
600 State St

Suite 2

Portsmouth, NH 03801

PO Number: None

Job ID: 57264

Date Received: 6/3/21

Project: North Hampton Municipal Complex 2021003

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below. The reported results apply to the sample(s) in the condition as received at the time the laboratory took custody. This report shall not be reproduced except in full, without written approval of the laboratory. The liability of ARA is limited to the cost of the requested analyses, unless otherwise agreed upon in writing.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely.

Absolute Resource Associates

Willie Stone

Authorized Signature

Date of Approval: 6/17/2021

Total number of pages: 17

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH902

Job ID: 57264

Sample#: 57264-001 Sample ID: SW-1 Matrix: Water

Method Reference: SOP-5317r0		Reporting		Instr Dil'n	Prep		Λna	ılysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorotridecanoic acid (PFTRIA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	14:30
perfluorododecanoic acid (PFDOA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluoroundecanoic acid (PFUNA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorodecanoic acid (PFDA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorononanoic acid (PFNA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	14:30
perfluorooctanoic acid (PFOA)	34	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluoroheptanoic acid (PFHPA)	7.5	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorohexanoic acid (PFHXA)	17	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluoropentanoic acid (PFPA)	6.3	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorobutanoic acid (PFBA)	5.6	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorodecane sulfonic acid (PFDS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorononanesulfonic acid (PFNS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorooctane sulfonic acid (PFOS)	71	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluoroheptane sulfonic acid (PFHPS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorohexane sulfonic acid (PFHXS)	82	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluoropentane sulfonic acid (PFPES)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorobutane sulfonic acid (PFBS)	5.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
8:2 fluorotelomer sulfonic acid (82FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
6:2 fluorotelomer sulfonic acid (62FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
4:2 fluorotelomer sulfonic acid (42FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
perfluorooctane sulfonamide (PFOSA) (FOSA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
n-methyl perfluorooctane sulfonamide (NMEFOSA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:30
Surrogate Recovery		Limits						
13C2-PFTeA SUR	53	50-200	%	1	WAS 6/7/21		6/7/21	14:30
13C-PFDoA SUR	77	50-200	%	1	WAS 6/7/21		6/7/21	14:30
13C7-PFUnA SUR	71	50-200	%	1	WAS 6/7/21		6/7/21	14:30
13C6-PFDA SUR	84	50-200	%	1	WAS 6/7/21		6/7/21	14:30
13C9-PFNA SUR	86	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30

Job ID: 57264

Sample#: 57264-001 Sample ID: SW-1 Matrix: Water

Sampled: 6/3/21 11:45

Method Reference: SOP-5317r0	ı	Reporting		Instr Dil'n	Prep		Ana	lysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
Surrogate Recovery		Limits						
13C8-PFOA SUR	91	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C4-PFHpA SUR	86	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C5-PFHxA SUR	71	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C5-PFPeA SUR	209 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C-PFBA SUR	99	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C8-PFOS SUR	93	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C3-PFHxS SUR	91	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C3-PFBS SUR	74	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C2-8:2FTSA SUR	156	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C2-6:2FTSA SUR	176	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C2-4:2FTSA SUR	180	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C8-FOSA SUR	52	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
D3-NMeFOSA SUR	12	10-100	%	1	WAS 6/7/21	13942	6/7/21	14:30
D5-NEtFOSAA SUR	93	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
D3-NMeFOSAA SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30
13C3-HFPO-DA SUR	67	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:30

Note: The response of IS13C4-PFBA was below the acceptance criteria. Re-analysis produced similar results. Matrix interference suspected.

^{*} This analogue showed recovery outside of the acceptance criteria. Matrix interference suspected.

Job ID: 57264

Sample#: 57264-002 Sample ID: SW-2 Matrix: Water

Method Reference: SOP-5317r0		Reporting		Instr Dil'n	Prep		۸na	llysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorotridecanoic acid (PFTRIA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	14:46
perfluorododecanoic acid (PFDOA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluoroundecanoic acid (PFUNA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorodecanoic acid (PFDA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorononanoic acid (PFNA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	14:46
perfluorooctanoic acid (PFOA)	6.7	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluoroheptanoic acid (PFHPA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorohexanoic acid (PFHXA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluoropentanoic acid (PFPA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorobutanoic acid (PFBA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorodecane sulfonic acid (PFDS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorononanesulfonic acid (PFNS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorooctane sulfonic acid (PFOS)	2.1	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluoroheptane sulfonic acid (PFHPS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorohexane sulfonic acid (PFHXS)	8.1	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluoropentane sulfonic acid (PFPES)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorobutane sulfonic acid (PFBS)	2.0	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
8:2 fluorotelomer sulfonic acid (82FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
6:2 fluorotelomer sulfonic acid (62FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
4:2 fluorotelomer sulfonic acid (42FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
perfluorooctane sulfonamide (PFOSA) (FOSA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
n-methyl perfluorooctane sulfonamide (NMEFOSA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	14:46
Surrogate Recovery		Limits						
13C2-PFTeA SUR	39 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C-PFDoA SUR	83	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C7-PFUnA SUR	98	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C6-PFDA SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C9-PFNA SUR	97	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46

Job ID: 57264

Sample#: 57264-002 Sample ID: SW-2 Matrix: Water

Sampled: 6/3/21 11:10

Method Reference: SOP-5317r0		D4!		I (. B.III .	D		A	l ! .
Parameter	Result	Reporting Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch	Ana Date	lysis Time
Surrogate Recovery		Limits			•			
13C8-PFOA SUR	95	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C4-PFHpA SUR	87	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C5-PFHxA SUR	63	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C5-PFPeA SUR	238 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C-PFBA SUR	99	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C8-PFOS SUR	94	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C3-PFHxS SUR	89	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C3-PFBS SUR	66	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C2-8:2FTSA SUR	200	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C2-6:2FTSA SUR	207 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C2-4:2FTSA SUR	158	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C8-FOSA SUR	50	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
D3-NMeFOSA SUR	11	10-100	%	1	WAS 6/7/21	13942	6/7/21	14:46
D5-NEtFOSAA SUR	143	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
D3-NMeFOSAA SUR	140	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46
13C3-HFPO-DA SUR	56	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:46

Note: The response of IS13C4-PFBA was below the acceptance criteria. Re-analysis produced similar results. Matrix interference suspected.

^{*} This analogue showed recovery outside of the acceptance criteria. Matrix interference suspected.

Job ID: 57264

Sample#: 57264-003 Sample ID: SW-3 Matrix: Water

Method Reference: SOP-5317r0		Donorting		Instr Dil'n	Dron		Anal	veie
Parameter	Result	Reporting Limit	Units	Factor	Prep Analyst Date	Batch	Anal Date	Time
perfluorotetradecanoic acid (PFTEA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorotridecanoic acid (PFTRIA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	15:02
perfluorododecanoic acid (PFDOA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	15:02
perfluoroundecanoic acid (PFUNA)	< 1.9	1.9	ng/L	1	WAS 6/7/21		6/7/21	15:02
perfluorodecanoic acid (PFDA)	4.4	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorononanoic acid (PFNA)	9.5	1.9	ng/L	1	WAS 6/7/21		6/7/21	15:02
perfluorooctanoic acid (PFOA)	73	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluoroheptanoic acid (PFHPA)	24	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorohexanoic acid (PFHXA)	85	1.9	ng/L	1	WAS 6/7/21		6/7/21	15:02
perfluoropentanoic acid (PFPA)	120	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorobutanoic acid (PFBA)	31	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorodecane sulfonic acid (PFDS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorononanesulfonic acid (PFNS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorooctane sulfonic acid (PFOS)	1100	10	ng/L	1	ACA 6/7/21	13942	6/15/21	16:57
perfluoroheptane sulfonic acid (PFHPS)	44	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorohexane sulfonic acid (PFHXS)	890	10	ng/L	1	ACA 6/7/21	13942	6/15/21	16:57
perfluoropentane sulfonic acid (PFPES)	95	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorobutane sulfonic acid (PFBS)	45	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
8:2 fluorotelomer sulfonic acid (82FTS)	2.2	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
6:2 fluorotelomer sulfonic acid (62FTS)	8.4	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
4:2 fluorotelomer sulfonic acid (42FTS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
perfluorooctane sulfonamide (PFOSA) (FOSA)	21	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
n-methyl perfluorooctane sulfonamide (NMEFOSA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	< 1.9	1.9	ng/L	1	WAS 6/7/21	13942	6/7/21	15:02
Surrogate Recovery		Limits						
13C2-PFTeA SUR	94	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C-PFDoA SUR	129	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C7-PFUnA SUR	126	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C6-PFDA SUR	123	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C9-PFNA SUR	64	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02

Job ID: 57264

Sample#: 57264-003 Sample ID: SW-3 Matrix: Water

Method Reference: SOP-5317r0	F	Reporting		Instr Dil'n	Prep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
Surrogate Recovery		Limits						
13C8-PFOA SUR	100	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C4-PFHpA SUR	80	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C5-PFHxA SUR	73	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C5-PFPeA SUR	203 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C-PFBA SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C8-PFOS SUR	106	50-200	%	1	ACA 6/7/21	13942	6/15/21	16:57
13C3-PFHxS SUR	109	50-200	%	1	ACA 6/7/21	13942	6/15/21	16:57
13C3-PFBS SUR	116	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C2-8:2FTSA SUR	438 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C2-6:2FTSA SUR	354 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C2-4:2FTSA SUR	297 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C8-FOSA SUR	122	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
D3-NMeFOSA SUR	27	10-100	%	1	WAS 6/7/21	13942	6/7/21	15:02
D5-NEtFOSAA SUR	213 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
D3-NMeFOSAA SUR	228 *	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02
13C3-HFPO-DA SUR	60	50-200	%	1	WAS 6/7/21	13942	6/7/21	15:02

^{*} This analogue showed recovery outside of the acceptance criteria. Matrix interference suspected.

Job ID: 57264

Sample#: 57264-004 Sample ID: 7/149 Matrix: Water

Sampled: 6/3/21 11:30								
Method Reference: SOP-5317r0		Reporting		Instr Dil'n	Prep		Ana	lysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorotridecanoic acid (PFTRIA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorododecanoic acid (PFDOA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluoroundecanoic acid (PFUNA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorodecanoic acid (PFDA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorononanoic acid (PFNA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorooctanoic acid (PFOA)	44	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluoroheptanoic acid (PFHPA)	3.8	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorohexanoic acid (PFHXA)	14	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluoropentanoic acid (PFPA)	5.9	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorobutanoic acid (PFBA)	2.1	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorodecane sulfonic acid (PFDS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorononanesulfonic acid (PFNS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorooctane sulfonic acid (PFOS)	16	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluoroheptane sulfonic acid (PFHPS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorohexane sulfonic acid (PFHXS)	44	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluoropentane sulfonic acid (PFPES)	4.5	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorobutane sulfonic acid (PFBS)	5.6	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
8:2 fluorotelomer sulfonic acid (82FTS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
6:2 fluorotelomer sulfonic acid (62FTS)	2.0	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
4:2 fluorotelomer sulfonic acid (42FTS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
perfluorooctane sulfonamide (PFOSA) (FOSA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
n-methyl perfluorooctane sulfonamide (NMEFOSA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	14:14
Surrogate Recovery		Limits						
13C2-PFTeA SUR	82	50-200	%	1	WAS 6/7/21		6/7/21	14:14
13C-PFDoA SUR	95	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C7-PFUnA SUR	88	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C6-PFDA SUR	110	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C9-PFNA SUR	95	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14

Job ID: 57264

Sample#: 57264-004 Sample ID: 7/149 Matrix: Water

Method Reference: SOP-5317r0		Reporting		Instr Dil'n	Prep		Ana	lysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
Surrogate Recovery		Limits						
13C8-PFOA SUR	102	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C4-PFHpA SUR	114	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C5-PFHxA SUR	114	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C5-PFPeA SUR	114	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C-PFBA SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C8-PFOS SUR	100	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C3-PFHxS SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C3-PFBS SUR	97	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C2-8:2FTSA SUR	111	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C2-6:2FTSA SUR	98	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C2-4:2FTSA SUR	111	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C8-FOSA SUR	60	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
D3-NMeFOSA SUR	8 *	10-100	%	1	WAS 6/7/21	13942	6/7/21	14:14
D5-NEtFOSAA SUR	100	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
D3-NMeFOSAA SUR	118	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14
13C3-HFPO-DA SUR	105	50-200	%	1	WAS 6/7/21	13942	6/7/21	14:14

^{*} This analogue showed recovery outside of the acceptance critera. No impact to the data is expected.

Job ID: 57264

Sample#: 57264-005 **Sample ID:** 7/77

Matrix: Water

Method Reference: SOP-5317r0		Reporting		Instr Dil'n	Prep		Δna	llysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
perfluorotetradecanoic acid (PFTEA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorotridecanoic acid (PFTRIA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorododecanoic acid (PFDOA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluoroundecanoic acid (PFUNA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorodecanoic acid (PFDA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorononanoic acid (PFNA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorooctanoic acid (PFOA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluoroheptanoic acid (PFHPA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorohexanoic acid (PFHXA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluoropentanoic acid (PFPA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorobutanoic acid (PFBA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorodecane sulfonic acid (PFDS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorononanesulfonic acid (PFNS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorooctane sulfonic acid (PFOS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluoroheptane sulfonic acid (PFHPS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorohexane sulfonic acid (PFHXS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluoropentane sulfonic acid (PFPES)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorobutane sulfonic acid (PFBS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
8:2 fluorotelomer sulfonic acid (82FTS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
6:2 fluorotelomer sulfonic acid (62FTS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
4:2 fluorotelomer sulfonic acid (42FTS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
perfluorooctane sulfonamide (PFOSA) (FOSA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
n-methyl perfluorooctane sulfonamide (NMEFOSA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	< 1.8	1.8	ng/L	1	WAS 6/7/21	13942	6/7/21	13:58
Surrogate Recovery		Limits						
13C2-PFTeA SUR	87	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:58
13C-PFDoA SUR	102	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:58
13C7-PFUnA SUR	86	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:58
13C6-PFDA SUR	106	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:58
13C9-PFNA SUR	104	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:58

Job ID: 57264

Sample#: 57264-005

Sample ID: 7/77 Matrix: Water

Sampled: 6/3/21 13:00

Method Reference: SOP-5317r0 Reporting **Analysis** Instr Dil'n Prep Limit **Parameter** Result Units Factor Analyst Date **Batch** Date Time **Surrogate Recovery** Limits 13C8-PFOA SUR 111 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 13C4-PFHpA SUR % 1 111 50-200 WAS 6/7/21 13942 6/7/21 13:58 13C5-PFHxA SUR 109 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 13C5-PFPeA SUR 115 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 13C-PFBA SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 105 13C8-PFOS SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 99 13C3-PFHxS SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 105 13C3-PFBS SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 97 % 1 WAS 6/7/21 13942 6/7/21 13:58 13C2-8:2FTSA SUR 50-200 114 13C2-6:2FTSA SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 102 13C2-4:2FTSA SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 103 13C8-FOSA SUR WAS 6/7/21 13942 6/7/21 13:58 59 50-200 % 1 D3-NMeFOSA SUR 10-100 % 1 WAS 6/7/21 13942 6/7/21 13:58 11 D5-NEtFOSAA SUR 1 WAS 6/7/21 13942 6/7/21 13:58 104 50-200 % D3-NMeFOSAA SUR 120 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58 13C3-HFPO-DA SUR 50-200 % 1 WAS 6/7/21 13942 6/7/21 13:58

104

Job ID: 57264

Sample#: 57264-006 Sample ID: Trip Blank Matrix: Water

Method Reference: SOP-5317r0		Donorting		Instr Dil'n	Dron		۸na	lveie
Parameter	Result	Reporting Limit	Units	Factor	Prep Analyst Date	Batch	Date	llysis Time
perfluorotetradecanoic acid (PFTEA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorotridecanoic acid (PFTRIA)	< 1.7	1.7	ng/L	1	WAS 6/7/21		6/7/21	13:26
perfluorododecanoic acid (PFDOA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluoroundecanoic acid (PFUNA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorodecanoic acid (PFDA)	< 1.7	1.7	ng/L	1	WAS 6/7/21		6/7/21	13:26
perfluorononanoic acid (PFNA)	< 1.7	1.7	ng/L	1	WAS 6/7/21		6/7/21	13:26
perfluorooctanoic acid (PFOA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluoroheptanoic acid (PFHPA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorohexanoic acid (PFHXA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluoropentanoic acid (PFPA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorobutanoic acid (PFBA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorodecane sulfonic acid (PFDS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorononanesulfonic acid (PFNS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorooctane sulfonic acid (PFOS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluoroheptane sulfonic acid (PFHPS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorohexane sulfonic acid (PFHXS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluoropentane sulfonic acid (PFPES)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorobutane sulfonic acid (PFBS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
8:2 fluorotelomer sulfonic acid (82FTS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
6:2 fluorotelomer sulfonic acid (62FTS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
4:2 fluorotelomer sulfonic acid (42FTS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
perfluorooctane sulfonamide (PFOSA) (FOSA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
n-methyl perfluorooctane sulfonamide (NMEFOSA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
n-ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
n-methylperfluorooctane sulfonamido acetic acid (NMEFOSAA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX acid) (HFPODA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
4,8-dioxa-3h-perfluorononanoic acid (ADONA acid) (ADONA)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CLPF3OUDS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CLPF3ONS)	< 1.7	1.7	ng/L	1	WAS 6/7/21	13942	6/7/21	13:26
Surrogate Recovery		Limits						
13C2-PFTeA SUR	97	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C-PFDoA SUR	94	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C7-PFUnA SUR	88	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C6-PFDA SUR	98	50-200	%	1	WAS 6/7/21		6/7/21	13:26
13C9-PFNA SUR	93	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26

Job ID: 57264

Sample#: 57264-006 Sample ID: Trip Blank Matrix: Water

Campical Grove								
Method Reference: SOP-5317r0		Reporting		Instr Dil'n	Prep		Ana	lysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time
Surrogate Recovery		Limits						
13C8-PFOA SUR	104	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C4-PFHpA SUR	107	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C5-PFHxA SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C5-PFPeA SUR	110	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C-PFBA SUR	103	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C8-PFOS SUR	96	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C3-PFHxS SUR	104	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C3-PFBS SUR	94	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C2-8:2FTSA SUR	97	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C2-6:2FTSA SUR	90	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C2-4:2FTSA SUR	98	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C8-FOSA SUR	50	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
D3-NMeFOSA SUR	7 '	10-100	%	1	WAS 6/7/21	13942	6/7/21	13:26
D5-NEtFOSAA SUR	104	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
D3-NMeFOSAA SUR	135	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26
13C3-HFPO-DA SUR	92	50-200	%	1	WAS 6/7/21	13942	6/7/21	13:26

^{*} This analogue showed recovery outside of the acceptance critera. No impact to the data is expected.

Isotope Dilution

SOP-5317r0 is an isotope dilution method. As such, isotopically labelled analogues and performance standards are used to account for variability that may arise from the extraction process or analytical instrumentation. Compounds labelled as "SUR" are utilized as extracted internal standards, meaning that they are subject to all steps of the extraction process. Compounds labelled as "IS" are used as performance standards and are added to samples following extraction. Isotope dilution analogue concentrations are calculated based upon the response of internal standards. In turn, the concentration of a target analyte is calculated in relation to the recovery of its associated analogue.

Direct analogues are used whenever possible, as they will behave identically to their analogous target analyte during the extraction process. However, not all the reported analytes have direct analogues commercially available. In instances where no direct analogue is available, an analogue with similar structure and chemistry to the target analyte is employed.

Refer to the included "Isotope Dilution Association Table" for the specific analogue (SS) and performance standard (IS) associated with each target compound.

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Isotope Dilution Association Table

PFTEA 13C2-PFTEA SUR 13C2-PFOA IS PFTRIA 13C2-PFTEA SUR 13C2-PFOA IS PFDOA 13C-PFDOA SUR 13C2-PFOA IS PFUNA 13C7-PFUNA SUR 13C2-PFOA IS PFDA 13C6-PFDA SUR 13C2-PFOA IS PFNA 13C9-PFNA SUR 13C2-PFOA IS PFOA 13C8-PFOA SUR 13C2-PFOA IS PFHPA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C3-PFBA IS PFBA 13C5-PFPA SUR 13C3-PFBA IS PFBA 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHYS 13C3-PFHXS SUR 13C4-PFOS IS PFHYS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFBX SUR 13C4-PFOS IS PFBS 13C3-PFBX SUR 13C4-PFOS IS 82FTS 13C2-PFOA IS 42FTS 13C2-ES-2FTSA SUR 13C4-PFOS IS	Analyto	Analogue (SS)	Performance
PFTRIA 13C2-PFTeA SUR 13C2-PFOA IS PFDOA 13C-PFDOA SUR 13C2-PFOA IS PFUNA 13C7-PFUNA SUR 13C2-PFOA IS PFDA 13C6-PFDA SUR 13C2-PFOA IS PFNA 13C9-PFNA SUR 13C2-PFOA IS PFOA 13C8-PFOA SUR 13C2-PFOA IS PFHPA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C3-PFBA IS PFPA 13C5-PFPAA SUR 13C3-PFBA IS PFBA 13C-PFDS SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHYS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFBS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-PFOS IS 13C4-PFOS IS 42FTS 13C2-FSA SUR 13C4-PFOS IS <th>Analyte</th> <th>Analogue (SS)</th> <th>Standard (IS)</th>	Analyte	Analogue (SS)	Standard (IS)
PFDOA 13C-PFDOA SUR 13C2-PFOA IS PFUNA 13C7-PFUNA SUR 13C2-PFOA IS PFDA 13C6-PFDA SUR 13C2-PFOA IS PFNA 13C9-PFNA SUR 13C2-PFOA IS PFOA 13C8-PFOA SUR 13C2-PFOA IS PFHPA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C3-PFBA IS PFPA 13C5-PFPA SUR 13C3-PFBA IS PFBA 13C8-PFOS SUR 13C4-PFOS IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PF			
PFUNA 13C7-PFUNA SUR 13C2-PFOA IS PFDA 13C6-PFDA SUR 13C2-PFOA IS PFNA 13C9-PFNA SUR 13C2-PFOA IS PFOA 13C8-PFOA SUR 13C2-PFOA IS PFDA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C3-PFBA IS PFPA 13C5-PFPA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 1			
PFDA 13C6-PFDA SUR 13C2-PFOA IS PFNA 13C9-PFNA SUR 13C2-PFOA IS PFOA 13C8-PFOA SUR 13C2-PFOA IS PFDA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C3-PFBA IS PFPA 13C5-PFPA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFHS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NMEFOSAA D3-NMeFOSAA SUR 13C2			
PFNA 13C9-PFNA SUR 13C2-PFOA IS PFOA 13C8-PFOA SUR 13C2-PFOA IS PFHPA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C2-PFOA IS PFPA 13C5-PFPA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMEFOSA SUR 13C4-PFOS IS NETFOSAA D5-NetFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMEFOSAA SUR <td< td=""><td></td><td></td><td></td></td<>			
PFOA 13C8-PFOA SUR 13C2-PFOA IS PFHPA 13C4-PFHPA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C2-PFOA IS PFPA 13C5-PFPeA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NMEFOSAA D3-NMeFOSAA SUR 13C4-PFOS IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR </td <td>PFDA</td> <td>13C6-PFDA SUR</td> <td>13C2-PFOA IS</td>	PFDA	13C6-PFDA SUR	13C2-PFOA IS
PFHPA 13C4-PFHpA SUR 13C2-PFOA IS PFHXA 13C5-PFHXA SUR 13C2-PFOA IS PFPA 13C5-PFPeA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NetFOSAA SUR 13C4-PFOS IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFOS SUR<	PFNA	13C9-PFNA SUR	13C2-PFOA IS
PFHXA 13C5-PFHXA SUR 13C2-PFOA IS PFPA 13C5-PFPA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NMEFOSAA D5-NetFOSAA SUR 13C4-PFOS IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFOS SUR 13C4-PFOS IS	PFOA	13C8-PFOA SUR	13C2-PFOA IS
PFPA 13C5-PFPeA SUR 13C3-PFBA IS PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHPA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFHPA	13C4-PFHpA SUR	13C2-PFOA IS
PFBA 13C-PFBA SUR 13C3-PFBA IS PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS ADONA 13C3-PFDO SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFHXA	13C5-PFHxA SUR	13C2-PFOA IS
PFDS 13C8-PFOS SUR 13C4-PFOS IS PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS ADONA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFOS SUR 13C4-PFOS IS	PFPA	13C5-PFPeA SUR	13C3-PFBA IS
PFNS 13C8-PFOS SUR 13C4-PFOS IS PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHXS SUR 13C4-PFOS IS PFPES 13C3-PFHXS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NMEFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS NMEFOSAA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHPA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFBA	13C-PFBA SUR	13C3-PFBA IS
PFOS 13C8-PFOS SUR 13C4-PFOS IS PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHxS SUR 13C4-PFOS IS PFPES 13C3-PFHxS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NMEFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHPA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFDS	13C8-PFOS SUR	13C4-PFOS IS
PFHPS 13C8-PFOS SUR 13C4-PFOS IS PFHXS 13C3-PFHxS SUR 13C4-PFOS IS PFPES 13C3-PFHxS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NMEFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHPA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFNS	13C8-PFOS SUR	13C4-PFOS IS
PFHXS 13C3-PFHxS SUR 13C4-PFOS IS PFPES 13C3-PFHxS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFOS	13C8-PFOS SUR	13C4-PFOS IS
PFPES 13C3-PFHxS SUR 13C4-PFOS IS PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFHPS	13C8-PFOS SUR	13C4-PFOS IS
PFBS 13C3-PFBS SUR 13C4-PFOS IS 82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFHXS	13C3-PFHxS SUR	13C4-PFOS IS
82FTS 13C2-8:2FTSA SUR 13C4-PFOS IS 62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFPES	13C3-PFHxS SUR	13C4-PFOS IS
62FTS 13C2-6:2FTSA SUR 13C4-PFOS IS 42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	PFBS	13C3-PFBS SUR	13C4-PFOS IS
42FTS 13C2-4:2FTSA SUR 13C4-PFOS IS FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMeFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	82FTS	13C2-8:2FTSA SUR	13C4-PFOS IS
FOSA 13C8-FOSA SUR 13C4-PFOS IS NMEFOSA D3-NMEFOSA SUR 13C4-PFOS IS NETFOSAA D5-NETFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMEFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHPA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	62FTS	13C2-6:2FTSA SUR	13C4-PFOS IS
NMEFOSA D3-NMEFOSA SUR 13C4-PFOS IS NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMEFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHPA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	42FTS	13C2-4:2FTSA SUR	13C4-PFOS IS
NETFOSAA D5-NEtFOSAA SUR 13C2-PFOA IS NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	FOSA	13C8-FOSA SUR	13C4-PFOS IS
NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	NMEFOSA	D3-NMeFOSA SUR	13C4-PFOS IS
NMEFOSAA D3-NMeFOSAA SUR 13C2-PFOA IS HFPODA 13C3-HFPO-DA SUR 13C2-PFOA IS ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	NETFOSAA	D5-NEtFOSAA SUR	13C2-PFOA IS
ADONA 13C4-PFHpA SUR 13C2-PFOA IS 11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	NMEFOSAA	D3-NMeFOSAA SUR	13C2-PFOA IS
11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	HFPODA	13C3-HFPO-DA SUR	13C2-PFOA IS
11CLPF3OUDS 13C8-PFOS SUR 13C4-PFOS IS	ADONA	13C4-PFHpA SUR	13C2-PFOA IS
	11CLPF3OUDS	·	13C4-PFOS IS
	9CLPF3ONS	13C8-PFOS SUR	13C4-PFOS IS

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

			,	. 1	1/_																											PAG	iE_	1	OF
Abso	lute F	Resou	rce			,			1		smo	age Aven outh, NH (-436-200	03801						-C LYS		REC	QU	ES	T						7:	26	54			,
associates								absoluteresourceassociates.com							ANALYSIS REQUEST																				
Company Name: Stone Hill Environmental Company Address: (CO State St. Suite 2 Portsmouth, Report To: NACK Henderson Phone #:								Pro	Project Name: North Hampton Municipal Complex Project #: 2071003 Project Location: IF MA ME VT Accreditation Required? N/Y: Protocol: RCRA SDWA NPDES MCP NAME DOD							☐ VOC 8021VT	Đ	☐ Gases-List:	☐ TPH Fingerprint	.1 U EDB	PFAS isotope dilution	CTC	☐ Apparent Color	☐ Acidity	☐ TAL Metals ☐ Hardness						☐ Bromide ☐ Fluoride		☐ TCLP SV0C ☐ TCLP Pesticide	☐ Asbestos	
605-812-707									Reporting QAPP GW 1 S-1								☐ 1,4-Dioxane	C Gas	NADEP	C EDB	isotop		rbidity	□ Alkalinity	Metals			010	□ Bacteria MFN	itrite C	□ Sulfate		P SVOC		
Invoice to: Hally Molet CCRA-MC. com_							Qu	Quote #							U VOC BTEX MtBE, only		☐ VOC 524.2 NH List	15 CLEPH MADEP	□ 8270ABN □ 625.1	533 PPFAS	☐ Mineral 0&G 1664	Conductivity Turbidity	OTVS CAIL	☐ Priority Pollutant Metals			NTC NTC	1 1	☐ Nitrate + Nitrite	9		0	ze Herbicides	(0)	
PO #:									□ NH Reimbursement Pricing ervation Method Sampling							VOC BT	GRO 8015	VOC 52	☐ DR0 8015	270ABI	□ PFAS 533	Mineral	Condu	TS C	□ Prior	42	Ils-ist:	000	□ Bac	□ Sulfide □		Ignitibil	□ TCLP V0C	☐ Grain Size	Composite (C)
Lab Sample ID (Lab Use Only) 5726441 vz v3 v4 v6	Fi	# CONTAINERS	WATER	dilos	ОТНЕВ	HCI	serva ONH	H ₂ SO ₂	NaOH	МеОН	DATE	Sampling	SAMPLER	U VOC 8260 ☐ VOC 8260 NHDES	□ V0C 624.1 □	O VPH MADEP	□ V0C 524.2 □	□ TPH 8100	□ 8270PAH □ 8270ABN □ 625.1 □ EDB		0&G 1664	008 L Hq L	OTSS OTDS	☐ RCRA Metals	☐ Total Metals-list:	☐ Dissolved Metals-list:	☐ Ammonia ☐ C00	□ T-Phosphorus □ Bacteria P/A	□ Cyanide □ Su	☐ Nitrate ☐ Nitrite		S	Subcontract:	Grab (G) or Con	
	SW-1 2 SW-2 2 SW-3 2 7 149 2 7 177 2 Trip blank 1			= XXXXXX	Ø	0	I	Ξ.	I	Z	2	(0-3-2) (0-3-2) (0-3-2) (0-3-2) (0-3-2)	1145	ME ME ME							XXXXXX													Ø	G G G
TAT REQUESTANCE OF TAT REQUESTAN	r)*	See absolution for samp current REPORT	ce po ation RUC	olicy a lists. CTIO	and NS	PYO	Date Ti) בענ	<u> </u>	tor	Lh)		\\in	7000	me	ni	al	. (o	m	-1			RAT	ON I		The state of the s	S ONO		
CUST RECO	ORD	Relinquist	7	K)	SL	1				(0-3) Di		Tir	ne		Received by:										100	Date)(Time						

16 of 17

57264 Sample Receipt Condition Report Job Number: **Absolute Resource Associates** □-UPS □-FedEx □-USPS ☑-Client Drop-off Samples Received from: □-Lab Courier Custody Seals - present & intact: □-Yes □-No N/A CoC signed: N-Yes □-No Sampled < 24 hrs ago? □ Yes □-No Receipt Temp: Samples on ice? □-Yes □-No □-N/A PFAS-only real ice? ▼-Yes □-No □-N/A D-No Any signs of freezing? □-Yes Comments: Bottle Size/Type & Quantity Check pH for ALL applicable* Preservation samples and document: / Analysis 40mL(G) 250mL(P) 500mL(P) HCl 1L(G) 125mL(P) 250mL(P) 500mL(P) HNO₃ H2SO4 40mL(G) 60mL(P) 125mL(P) 250mL(P) 500mL(P) NaOH 125mL(P) 250mL(P) (NH₄)₂SO₄ 60mL(P) 125mL(P) 250mL(P) ZnAc-NaOH 250mL(P) 125mL(P) *pH ✓by analyst:VOC, PFAS, TOC,O&G Trizma 125mL(P) 250mL (P) Residual Cl not present: NH₄Ac 125mL(P) 250mL (P) Pest608 ABN625_ NaS2O3 40mL(G) 120mL(P) Bacteria ResCl √by analyst MeOH 20mL(G) 40mL(G) PC Dry applicable? Y None (solid) 2oz(G)4oz(G) 8oz(G) Syringe 1L(G) None (water) 40ml (G) 60mL(P) 125mL(P) 250mL(P) 500mL(P) 1L (P) Mold Bulk Plate Tape Lift Cassette Bulk Asbestos Cassette Bulk Wipe Lead Cassette Login Review Yes No N/A Comments Proper lab sample containers/enough volume/correct preservative? Analyses marked on COC match bottles received? VOC &TOC Water-no headspace? VOC Solid-McOH covers solid, no leaks, Prep Expiration OK? PFAS: Lab specific bottles? QC received, if required? Bacteria bottles provided by ARA? Samples within holding time? Immediate tests communicated in writing: NO3, NO2,0-PO4, pH, BOD, Coliform/E. coli (P/A or MPN), Enterococci, Color Surfactants, Turbidity, Odor, CrVI, Ferrous Iron, Dissolved Oxygen, Unpres 624 Date, time & ID on samples match CoC? Rushes communicated to analyst in writing? Subcontract note on login board? Pesticides EPA 608 pH5-9? Compliance samples have no discrepancies/require no flags? (Or must be rejected) Discrepancies, compliance samples (NHDES, MADEP, Log-in Supervisor notified immediately of following items: DoD etc.) or uncommon requests. Date/Time: Inspected and Received By: Peer Review Checklist Analyses in Correctly ☐ Client ID/Project Manager ☐ On Ice, Temperature OK? Sample IDs -references ☐ Project Name ☐ PO# (if provided) Matrix

Date/Time collected -wastewater methods ☐ TAT/rushes communicated ☐ Sub samples sent? Shipping Charge? ☐ Issues noted above communicated? Short HTs communicated Notes from CoC in LIMS ☐ Received Date/Time Reviewed By: Date: What was sent? Notes: (continue on back as needed) Initials Date Uploaded / PDF Report / Data / EDD / Invoice Uploaded / PDF Report / Data / EDD / Invoice

> Uploaded / PDF 17 of 17

Report / Data / EDD / Invoice